A new hybrid technique for modeling dense star clusters

IF 16.281
Carl L. Rodriguez, Bharath Pattabiraman, Sourav Chatterjee, Alok Choudhary, Wei-keng Liao, Meagan Morscher, Frederic A. Rasio
{"title":"A new hybrid technique for modeling dense star clusters","authors":"Carl L. Rodriguez,&nbsp;Bharath Pattabiraman,&nbsp;Sourav Chatterjee,&nbsp;Alok Choudhary,&nbsp;Wei-keng Liao,&nbsp;Meagan Morscher,&nbsp;Frederic A. Rasio","doi":"10.1186/s40668-018-0027-3","DOIUrl":null,"url":null,"abstract":"<p>The “gravitational million-body problem,” to model the dynamical evolution of a self-gravitating, collisional <i>N</i>-body system with ~10<sup>6</sup> particles over many relaxation times, remains a major challenge in computational astrophysics. Unfortunately, current techniques to model such systems suffer from severe limitations. A direct <i>N</i>-body simulation with more than 10<sup>5</sup> particles can require months or even years to complete, while an orbit-sampling Monte Carlo approach cannot adequately model the dynamics in a dense cluster core, particularly in the presence of many black holes. We have developed a new technique combining the precision of a direct <i>N</i>-body integration with the speed of a Monte Carlo approach. Our Rapid And Precisely Integrated Dynamics code, the <span>RAPID</span> code, statistically models interactions between neighboring stars and stellar binaries while integrating directly the orbits of stars or black holes in the cluster core. This allows us to accurately simulate the dynamics of the black holes in a realistic globular cluster environment without the burdensome <span>\\(N^{2}\\)</span> scaling of a full <i>N</i>-body integration. We compare <span>RAPID</span> models of idealized globular clusters to identical models from the direct <i>N</i>-body and Monte Carlo methods. Our tests show that <span>RAPID</span> can reproduce the half-mass radii, core radii, black hole ejection rates, and binary properties of the direct <i>N</i>-body models far more accurately than a standard Monte Carlo integration while remaining significantly faster than a full <i>N</i>-body integration. With this technique, it will be possible to create more realistic models of Milky Way globular clusters with sufficient rapidity to explore the full parameter space of dense stellar clusters.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":"5 1","pages":""},"PeriodicalIF":16.2810,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-018-0027-3","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-018-0027-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The “gravitational million-body problem,” to model the dynamical evolution of a self-gravitating, collisional N-body system with ~106 particles over many relaxation times, remains a major challenge in computational astrophysics. Unfortunately, current techniques to model such systems suffer from severe limitations. A direct N-body simulation with more than 105 particles can require months or even years to complete, while an orbit-sampling Monte Carlo approach cannot adequately model the dynamics in a dense cluster core, particularly in the presence of many black holes. We have developed a new technique combining the precision of a direct N-body integration with the speed of a Monte Carlo approach. Our Rapid And Precisely Integrated Dynamics code, the RAPID code, statistically models interactions between neighboring stars and stellar binaries while integrating directly the orbits of stars or black holes in the cluster core. This allows us to accurately simulate the dynamics of the black holes in a realistic globular cluster environment without the burdensome \(N^{2}\) scaling of a full N-body integration. We compare RAPID models of idealized globular clusters to identical models from the direct N-body and Monte Carlo methods. Our tests show that RAPID can reproduce the half-mass radii, core radii, black hole ejection rates, and binary properties of the direct N-body models far more accurately than a standard Monte Carlo integration while remaining significantly faster than a full N-body integration. With this technique, it will be possible to create more realistic models of Milky Way globular clusters with sufficient rapidity to explore the full parameter space of dense stellar clusters.

Abstract Image

一种模拟致密星团的新混合技术
“引力百万体问题”,即模拟具有~106个粒子的自引力碰撞n体系统在许多弛豫时间内的动态演化,仍然是计算天体物理学中的一个主要挑战。不幸的是,目前对这类系统进行建模的技术存在严重的局限性。超过105个粒子的直接n体模拟可能需要数月甚至数年才能完成,而轨道采样蒙特卡罗方法无法充分模拟密集星团核心的动力学,特别是在存在许多黑洞的情况下。我们开发了一种新技术,结合了直接n体积分的精度和蒙特卡罗方法的速度。我们的快速和精确集成动力学代码,Rapid代码,统计模型之间的相互作用邻近的恒星和双星,同时直接整合恒星或黑洞的轨道在星团核心。这使我们能够在真实的球状星团环境中准确地模拟黑洞的动力学,而不需要繁琐的\(N^{2}\)全n体集成缩放。我们将理想球状星团的RAPID模型与直接n体和蒙特卡罗方法的相同模型进行了比较。我们的测试表明,RAPID可以比标准蒙特卡罗积分更准确地再现直接n体模型的半质量半径、核心半径、黑洞喷射率和二元特性,同时仍然比完全n体积分快得多。有了这项技术,将有可能以足够的速度创建更真实的银河系球状星团模型,以探索致密星团的全参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信