A database of detrital zircon U–Pb ages and Hf isotopes for the Middle East (Iranian and Arabian plates)

IF 3.3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Gaoyuan Sun, Jianuo Chen
{"title":"A database of detrital zircon U–Pb ages and Hf isotopes for the Middle East (Iranian and Arabian plates)","authors":"Gaoyuan Sun,&nbsp;Jianuo Chen","doi":"10.1002/gdj3.187","DOIUrl":null,"url":null,"abstract":"<p>The detrital zircon records significant information in the ‘source-sink’ system. With the application of in situ laser ablation technology, a large number of high-quality detrital zircon data have been published since 2000. In this study, a total of 41,342 detrital zircon U–Pb ages and 6,129 Hf isotopes were compiled from the published literatures of the Middle East (Iranian and Arabian plates). Through data filtering and recalculation, valid data were employed for further analysis. The detrital zircons from the Middle East show a Cambrian–Precambrian age population of 500–1,000 Ma, with a major age peak of ~620 Ma and dispersed εHf(t) values of −35 to +20. The Alborz Mountains and central Iran terrane show a Permo–Triassic age range of 200–300 Ma. The Mesozoic–Cenozoic detrital zircons are mostly occurred in the Zagros orogenic belt and Makran accretionary complex, with three obvious age ranges of 145–180 Ma, 80–110 Ma and 15–65 Ma. The Mesozoic zircons yield positive εHf(t) values, while Cenozoic zircons have varied εHf(t) values. This database allows for the further exploration of the provenance analysis and application in constraining the timing of the major tectonic events in the Middle East, and may also help to explore the affinities of plates, thus guiding future palaeogeographic research efforts.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"11 2","pages":"107-117"},"PeriodicalIF":3.3000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.187","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The detrital zircon records significant information in the ‘source-sink’ system. With the application of in situ laser ablation technology, a large number of high-quality detrital zircon data have been published since 2000. In this study, a total of 41,342 detrital zircon U–Pb ages and 6,129 Hf isotopes were compiled from the published literatures of the Middle East (Iranian and Arabian plates). Through data filtering and recalculation, valid data were employed for further analysis. The detrital zircons from the Middle East show a Cambrian–Precambrian age population of 500–1,000 Ma, with a major age peak of ~620 Ma and dispersed εHf(t) values of −35 to +20. The Alborz Mountains and central Iran terrane show a Permo–Triassic age range of 200–300 Ma. The Mesozoic–Cenozoic detrital zircons are mostly occurred in the Zagros orogenic belt and Makran accretionary complex, with three obvious age ranges of 145–180 Ma, 80–110 Ma and 15–65 Ma. The Mesozoic zircons yield positive εHf(t) values, while Cenozoic zircons have varied εHf(t) values. This database allows for the further exploration of the provenance analysis and application in constraining the timing of the major tectonic events in the Middle East, and may also help to explore the affinities of plates, thus guiding future palaeogeographic research efforts.

Abstract Image

Abstract Image

中东(伊朗板块和阿拉伯板块)碎屑锆石 U-Pb 年龄和 Hf 同位素数据库
碎屑锆石记录了 "源-汇 "系统中的重要信息。自 2000 年以来,随着原位激光烧蚀技术的应用,发表了大量高质量的碎屑锆石数据。本研究从中东(伊朗板块和阿拉伯板块)已发表的文献中汇编了 41 342 个锆英石 U-Pb 年龄和 6 129 个 Hf 同位素数据。通过数据过滤和重新计算,有效数据被用于进一步分析。中东地区的碎屑锆石显示出500-1,000Ma的寒武纪-前寒武纪年龄群,主要年龄峰值约为620Ma,εHf(t)值分散在-35至+20之间。阿尔伯兹山脉和伊朗中部地层显示的二叠三叠纪年龄范围为 200-300 Ma。中生代-新生代碎屑锆石主要分布在扎格罗斯造山带和马克兰增生复合带,有三个明显的年龄段,分别为 145-180 Ma、80-110 Ma 和 15-65 Ma。中生代锆石的εHf(t)值为正值,而新生代锆石的εHf(t)值则各不相同。该数据库有助于进一步探索中东地区主要构造事件的成因分析和应用时间,也有助于探索板块的亲缘关系,从而指导未来的古地理研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience Data Journal
Geoscience Data Journal GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍: Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered. An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices. Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信