Adaptive techniques for clustered N-body cosmological simulations

IF 16.281
Harshitha Menon, Lukasz Wesolowski, Gengbin Zheng, Pritish Jetley, Laxmikant Kale, Thomas Quinn, Fabio Governato
{"title":"Adaptive techniques for clustered N-body cosmological simulations","authors":"Harshitha Menon,&nbsp;Lukasz Wesolowski,&nbsp;Gengbin Zheng,&nbsp;Pritish Jetley,&nbsp;Laxmikant Kale,&nbsp;Thomas Quinn,&nbsp;Fabio Governato","doi":"10.1186/s40668-015-0007-9","DOIUrl":null,"url":null,"abstract":"<p>\n <span>ChaNGa</span> is an N-body cosmology simulation application implemented using <span>Charm++</span>. In this paper, we present the parallel design of <span>ChaNGa</span> and address many challenges arising due to the high dynamic ranges of clustered datasets. We propose optimizations based on adaptive techniques. We evaluate the performance of <span>ChaNGa</span> on highly clustered datasets: a <span>\\(z \\sim0\\)</span> snapshot of a 2 billion particle realization of a 25 Mpc volume, and a 52 million particle multi-resolution realization of a dwarf galaxy. For the 25 Mpc volume, we show strong scaling on up to 128<i>K</i> cores of Blue Waters. We also demonstrate scaling up to 128<i>K</i> cores of a multi-stepping run of the 2 billion particle simulation. While the scaling of the multi-stepping run is not as good as single stepping, the throughput at 128<i>K</i> cores is greater by a factor of 2. We also demonstrate strong scaling on up to 512<i>K</i> cores of Blue Waters for two large, uniform datasets with 12 and 24 billion particles.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":"2 1","pages":""},"PeriodicalIF":16.2810,"publicationDate":"2015-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-015-0007-9","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-015-0007-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

ChaNGa is an N-body cosmology simulation application implemented using Charm++. In this paper, we present the parallel design of ChaNGa and address many challenges arising due to the high dynamic ranges of clustered datasets. We propose optimizations based on adaptive techniques. We evaluate the performance of ChaNGa on highly clustered datasets: a \(z \sim0\) snapshot of a 2 billion particle realization of a 25 Mpc volume, and a 52 million particle multi-resolution realization of a dwarf galaxy. For the 25 Mpc volume, we show strong scaling on up to 128K cores of Blue Waters. We also demonstrate scaling up to 128K cores of a multi-stepping run of the 2 billion particle simulation. While the scaling of the multi-stepping run is not as good as single stepping, the throughput at 128K cores is greater by a factor of 2. We also demonstrate strong scaling on up to 512K cores of Blue Waters for two large, uniform datasets with 12 and 24 billion particles.

Abstract Image

聚类n体宇宙学模拟的自适应技术
ChaNGa是一个使用Charm++实现的n体宇宙学模拟应用程序。在本文中,我们提出了ChaNGa的并行设计,并解决了由于聚类数据集的高动态范围而引起的许多挑战。我们提出了基于自适应技术的优化。我们评估了ChaNGa在高度聚类数据集上的性能:\(z \sim0\)快照,其中包含25 Mpc体积的20亿个粒子实现,以及一个矮星系的5200万个粒子多分辨率实现。对于25mpc的容量,我们在Blue Waters的128K核上显示了强大的扩展。我们还演示了在20亿个粒子模拟的多步运行中扩展到128K核。虽然多步运行的伸缩性不如单步运行的伸缩性好,但128K内核的吞吐量是单步运行的2倍。我们还展示了在高达512K的Blue Waters内核上对两个具有120亿个和240亿个粒子的大型统一数据集的强大扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信