ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data

Q1 Biochemistry, Genetics and Molecular Biology
Keiran M. Raine, Peter Van Loo, David C. Wedge, David Jones, Andrew Menzies, Adam P. Butler, Jon W. Teague, Patrick Tarpey, Serena Nik-Zainal, Peter J. Campbell
{"title":"ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data","authors":"Keiran M. Raine,&nbsp;Peter Van Loo,&nbsp;David C. Wedge,&nbsp;David Jones,&nbsp;Andrew Menzies,&nbsp;Adam P. Butler,&nbsp;Jon W. Teague,&nbsp;Patrick Tarpey,&nbsp;Serena Nik-Zainal,&nbsp;Peter J. Campbell","doi":"10.1002/cpbi.17","DOIUrl":null,"url":null,"abstract":"<p>We have developed ascatNgs to aid researchers in carrying out Allele-Specific Copy number Analysis of Tumours (ASCAT). ASCAT is capable of detecting DNA copy number changes affecting a tumor genome when comparing to a matched normal sample. Additionally, the algorithm estimates the amount of tumor DNA in the sample, known as Aberrant Cell Fraction (ACF). ASCAT itself is an R-package which requires the generation of many file types. Here, we present a suite of tools to help handle this for the user. Our code is available on our GitHub site (https://github.com/cancerit). This unit describes both ‘one-shot’ execution and approaches more suitable for large-scale compute farms. © 2016 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.17","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 108

Abstract

We have developed ascatNgs to aid researchers in carrying out Allele-Specific Copy number Analysis of Tumours (ASCAT). ASCAT is capable of detecting DNA copy number changes affecting a tumor genome when comparing to a matched normal sample. Additionally, the algorithm estimates the amount of tumor DNA in the sample, known as Aberrant Cell Fraction (ACF). ASCAT itself is an R-package which requires the generation of many file types. Here, we present a suite of tools to help handle this for the user. Our code is available on our GitHub site (https://github.com/cancerit). This unit describes both ‘one-shot’ execution and approaches more suitable for large-scale compute farms. © 2016 by John Wiley & Sons, Inc.

ascatNgs:从全基因组测序数据中识别体细胞获得的拷贝数改变
我们开发了ascatgs,以帮助研究人员进行肿瘤等位基因特异性拷贝数分析(ASCAT)。与匹配的正常样本相比,ASCAT能够检测影响肿瘤基因组的DNA拷贝数变化。此外,该算法估计样本中肿瘤DNA的数量,称为异常细胞分数(ACF)。ASCAT本身是一个r包,它需要生成许多文件类型。在这里,我们提供了一套工具来帮助用户处理这个问题。我们的代码可在我们的GitHub网站(https://github.com/cancerit)。本单元描述了“一次性”执行和更适合大规模计算场的方法。©2016 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信