L. V. Kozak, B. A. Petrenko, E. E. Grigorenko, E. A. Kronberg
{"title":"Comparison of Ground-Based and Satellite Geomagnetic Pulsations during Substorms","authors":"L. V. Kozak, B. A. Petrenko, E. E. Grigorenko, E. A. Kronberg","doi":"10.3103/S0884591322010044","DOIUrl":null,"url":null,"abstract":"<p>Magnetic field pulsations in the magnetosphere and the time of their detection and location on the Earth’s surface are analyzed. Measurements of magnetic field fluctuations from fluxgate magnetometers of the Cluster II satellites and measurements from ground-based magnetometers in the auroral oval region are used. The substorms on August 13, 2019, are examined. In particular, two substorms and flapping motions of the magnetotail current sheet are analyzed. The measurements from ground-based observatories are selected using the 3DView software, a tool for the visualization of spacecraft position with associated geomagnetic tail field lines. A continuous wavelet transform is used to identify geomagnetic pulsations, and an integrated representation in two frequency bands, 45–150 s (Pc4/Pi2) and 150–600 s (Pc5/Pi3), is considered to determine the pulsation type and estimate the observed shifts between the pulsations recorded in the Earth’s magnetotail and in the auroral oval region. Correlated Pi2 and Pc5 pulsations in the auroral region and in the magnetotail are detected. The magnitude of detected pulsations depends on the relative position of ground-based magnetometers and the projection of the field line on which the spacecraft are located. Based on the time delay between the maxima of geomagnetic pulsations at the Earth’s surface in relation to disturbances in the magnetosphere, the velocity of disturbance propagation along the magnetic field line is estimated.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"38 1","pages":"1 - 10"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591322010044","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic field pulsations in the magnetosphere and the time of their detection and location on the Earth’s surface are analyzed. Measurements of magnetic field fluctuations from fluxgate magnetometers of the Cluster II satellites and measurements from ground-based magnetometers in the auroral oval region are used. The substorms on August 13, 2019, are examined. In particular, two substorms and flapping motions of the magnetotail current sheet are analyzed. The measurements from ground-based observatories are selected using the 3DView software, a tool for the visualization of spacecraft position with associated geomagnetic tail field lines. A continuous wavelet transform is used to identify geomagnetic pulsations, and an integrated representation in two frequency bands, 45–150 s (Pc4/Pi2) and 150–600 s (Pc5/Pi3), is considered to determine the pulsation type and estimate the observed shifts between the pulsations recorded in the Earth’s magnetotail and in the auroral oval region. Correlated Pi2 and Pc5 pulsations in the auroral region and in the magnetotail are detected. The magnitude of detected pulsations depends on the relative position of ground-based magnetometers and the projection of the field line on which the spacecraft are located. Based on the time delay between the maxima of geomagnetic pulsations at the Earth’s surface in relation to disturbances in the magnetosphere, the velocity of disturbance propagation along the magnetic field line is estimated.
分析了磁层中的磁场脉动及其在地球表面的探测时间和位置。利用第二群集卫星的磁通门磁强计测量磁场波动,并利用极光椭圆区地面磁强计测量磁场波动。研究了2019年8月13日的亚暴。特别分析了两种亚暴和磁尾电流片的扑动运动。地面观测站的测量数据使用3DView软件进行选择,这是一种可视化航天器位置和相关地磁场尾线的工具。利用连续小波变换识别地磁脉动,考虑45 ~ 150 s (Pc4/Pi2)和150 ~ 600 s (Pc5/Pi3)两个频带的综合表示,确定脉动类型,并估计地球磁尾和极光椭圆区观测到的脉动位移。在极光区和磁尾中检测到相关的Pi2和Pc5脉动。探测到的脉动的大小取决于地面磁力计的相对位置和航天器所在的磁场线的投影。根据地表地磁脉动最大值与磁层扰动之间的时间差,估计了扰动沿磁力线传播的速度。
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.