Predicting payment and nonpayment of direct mail obligations: Profiling good and bad credit risks

James W. Peltier , John A. Schibrowsky , John W. Davis
{"title":"Predicting payment and nonpayment of direct mail obligations: Profiling good and bad credit risks","authors":"James W. Peltier ,&nbsp;John A. Schibrowsky ,&nbsp;John W. Davis","doi":"10.1002/(SICI)1522-7138(199621)10:2<36::AID-DIR5>3.0.CO;2-#","DOIUrl":null,"url":null,"abstract":"<div><p>Profiles of prospect groups are developed in terms of their likelihood of fulfilling financial obligations to direct mail offers. An extensive database of individuals responding to a variety of direct mail offers is analyzed, and the variables that best differentiate the likelihood of defaulting or not defaulting on their financial commitments are identified. Two specific data-analytic models are presented. The first tests hypotheses pertaining to a limited set of demographic and credit-related variables. The second begins with a set of 271 variables and identifies the 11 that best predict default likelihood.</p></div>","PeriodicalId":100774,"journal":{"name":"Journal of Direct Marketing","volume":"10 2","pages":"Pages 36-43"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1522-7138(199621)10:2<36::AID-DIR5>3.0.CO;2-#","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Direct Marketing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892059196702872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Profiles of prospect groups are developed in terms of their likelihood of fulfilling financial obligations to direct mail offers. An extensive database of individuals responding to a variety of direct mail offers is analyzed, and the variables that best differentiate the likelihood of defaulting or not defaulting on their financial commitments are identified. Two specific data-analytic models are presented. The first tests hypotheses pertaining to a limited set of demographic and credit-related variables. The second begins with a set of 271 variables and identifies the 11 that best predict default likelihood.

预测支付和不支付直邮义务:分析良好和不良信用风险
潜在群体的概况是根据他们履行直接邮件提供的财务义务的可能性来制定的。我们分析了一个广泛的个人数据库,其中包括对各种直接邮件的回应,并确定了最能区分其财务承诺违约或不违约可能性的变量。提出了两种具体的数据分析模型。第一个测试是关于一组有限的人口统计和信用相关变量的假设。第二个方法从一组271个变量开始,并确定最能预测违约可能性的11个变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信