Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebras with infinite dimensional coefficients

Pub Date : 2018-04-28 DOI:10.1007/s40062-018-0205-7
B. Rangipour, S. Sütlü, F. Yazdani Aliabadi
{"title":"Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebras with infinite dimensional coefficients","authors":"B. Rangipour,&nbsp;S. Sütlü,&nbsp;F. Yazdani Aliabadi","doi":"10.1007/s40062-018-0205-7","DOIUrl":null,"url":null,"abstract":"<p>We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebra <span>\\(\\mathcal{H}_n\\)</span>. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of <span>\\(\\mathcal{H}_n\\)</span>, and we show that the van Est type characteristic homomorphism from the Hopf-cyclic complex of <span>\\(\\mathcal{H}_n\\)</span> to the Gelfand–Fuks cohomology of the Lie algebra <span>\\(W_n\\)</span> of formal vector fields on <span>\\({\\mathbb {R}}^n\\)</span> respects this multiplicative structure. We then illustrate the machinery for <span>\\(n=1\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0205-7","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0205-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebra \(\mathcal{H}_n\). More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of \(\mathcal{H}_n\), and we show that the van Est type characteristic homomorphism from the Hopf-cyclic complex of \(\mathcal{H}_n\) to the Gelfand–Fuks cohomology of the Lie algebra \(W_n\) of formal vector fields on \({\mathbb {R}}^n\) respects this multiplicative structure. We then illustrate the machinery for \(n=1\).

分享
查看原文
无穷维系数的cones - moscovici Hopf代数的Hopf-循环上同调
讨论了一种计算Connes-Moscovici Hopf代数Hopf-循环上同调的新策略\(\mathcal{H}_n\)。更确切地说,我们在\(\mathcal{H}_n\)的hopf -循环复合体上引入了一个乘法结构,并证明了从\(\mathcal{H}_n\)的hopf -循环复合体到\({\mathbb {R}}^n\)上形式向量场的李代数\(W_n\)的Gelfand-Fuks上同调的van Est型特征同态遵从这个乘法结构。然后我们说明\(n=1\)的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信