W. R. Carper
{"title":"Direct determination of quadrupolar and dipolar NMR correlation times from spin-lattice and spin-spin relaxation rates","authors":"W. R. Carper","doi":"10.1002/(SICI)1099-0534(1999)11:1<51::AID-CMR3>3.3.CO;2-V","DOIUrl":null,"url":null,"abstract":"Recent developments in the mathematical solution of nuclear magnetic resonance (NMR) relaxation equations describing rotational motion allow investigators to determine correlation times, τ, on the nanosecond time scale. NMR rotational correlation equations for quadrupolar and dipolar relaxation can be solved for nuclei in moderately viscous media using R2/R1 ratios. In the case of quadrupolar nuclei, the R2/R1 ratios can be used to solve the rotational correlation equations directly. For dipolar nuclei including 1H, 13C, 15N, 19F, 31P, and 113Cd, it is necessary to solve the rotational correlation time equations at each magnetic field strength using iterative methods. The resulting solutions are fitted to pairs of polynomials (R2/R1=1.1–20 and 20–1200) at individual magnetic field strengths (4.7, 6.35, 7.05, 9.4, 11.75, and 14.1 T). The investigator determines the R2/R1 ratio at a specific magnetic field and uses the appropriate polynomial to determine the rotational correlation time. Correlation times are used to study molecular interactions where dipolar relaxtion occurs and to determine quadrupole coupling constants, χ, where quadrupole relaxation is the predominant mechanism. 1H-NMR diffusion constants can be compared with NMR correlation times to provide data about the transport properties of the system being studied. ©1999 John Wiley & Sons, Inc. Concepts Magn Reson 11: 51–60, 1999","PeriodicalId":89665,"journal":{"name":"Concepts in magnetic resonance","volume":"12 4","pages":"51-60"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in magnetic resonance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-0534(1999)11:1<51::AID-CMR3>3.3.CO;2-V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
从自旋-晶格和自旋-自旋弛豫速率直接测定四极和偶极核磁共振相关时间
描述旋转运动的核磁共振(NMR)弛豫方程的数学解的最新发展使研究人员能够在纳秒时间尺度上确定相关时间τ。四极和偶极弛豫的核磁共振旋转相关方程可以用R2/R1比在中等粘性介质中求解。在四极核的情况下,R2/R1比值可直接用于求解旋转相关方程。对于包括1H、13C、15N、19F、31P和113Cd在内的偶极原子核,需要用迭代法求解各磁场强度下的旋转相关时间方程。在不同磁场强度(4.7、6.35、7.05、9.4、11.75和14.1 T)下,将得到的解拟合为多项式对(R2/R1= 1.1-20和20-1200)。研究者确定特定磁场下的R2/R1比率,并使用适当的多项式来确定旋转相关时间。相关时间用于研究偶极弛豫发生的分子相互作用,并确定四极耦合常数χ,其中四极弛豫是主要机制。h -NMR扩散常数可以与NMR相关次数进行比较,从而提供所研究体系输运性质的数据。©1999 John Wiley & Sons, Inc概念管理,vol . 11: 51-60, 1999
本文章由计算机程序翻译,如有差异,请以英文原文为准。