{"title":"Unstable splittings in Hodge filtered Brown–Peterson cohomology","authors":"Gereon Quick","doi":"10.1007/s40062-018-0215-5","DOIUrl":null,"url":null,"abstract":"<p>We construct Hodge filtered function spaces associated to infinite loop spaces. For Brown–Peterson cohomology, we show that the corresponding Hodge filtered spaces satisfy an analog of Wilson’s unstable splitting. As a consequence, we obtain an analog of Quillen’s theorem for Hodge filtered Brown–Peterson cohomology for complex manifolds.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 2","pages":"349 - 369"},"PeriodicalIF":0.7000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0215-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0215-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct Hodge filtered function spaces associated to infinite loop spaces. For Brown–Peterson cohomology, we show that the corresponding Hodge filtered spaces satisfy an analog of Wilson’s unstable splitting. As a consequence, we obtain an analog of Quillen’s theorem for Hodge filtered Brown–Peterson cohomology for complex manifolds.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.