Christopher P Garnham, Robert L Campbell, Virginia K Walker, Peter L Davies
{"title":"Novel dimeric β-helical model of an ice nucleation protein with bridged active sites","authors":"Christopher P Garnham, Robert L Campbell, Virginia K Walker, Peter L Davies","doi":"10.1186/1472-6807-11-36","DOIUrl":null,"url":null,"abstract":"<p>Ice nucleation proteins (INPs) allow water to freeze at high subzero temperatures. Due to their large size (>120 kDa), membrane association, and tendency to aggregate, an experimentally-determined tertiary structure of an INP has yet to be reported. How they function at the molecular level therefore remains unknown.</p><p>Here we have predicted a novel β-helical fold for the INP produced by the bacterium <i>Pseudomonas borealis</i>. The protein uses internal serine and glutamine ladders for stabilization and is predicted to dimerize via the burying of a solvent-exposed tyrosine ladder to make an intimate hydrophobic contact along the dimerization interface. The manner in which <i>Pb</i> INP dimerizes also allows for its multimerization, which could explain the aggregation-dependence of INP activity. Both sides of the <i>Pb</i> INP structure have tandem arrays of amino acids that can organize waters into the ice-like clathrate structures seen on antifreeze proteins.</p><p>Dimerization dramatically increases the 'ice-active' surface area of the protein by doubling its width, increasing its length, and presenting identical ice-forming surfaces on both sides of the protein. We suggest that this allows sufficient anchored clathrate waters to align on the INP surface to nucleate freezing. As <i>Pb</i> INP is highly similar to all known bacterial INPs, we predict its fold and mechanism of action will apply to these other INPs.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"11 1","pages":""},"PeriodicalIF":2.2220,"publicationDate":"2011-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6807-11-36","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/1472-6807-11-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 109
Abstract
Ice nucleation proteins (INPs) allow water to freeze at high subzero temperatures. Due to their large size (>120 kDa), membrane association, and tendency to aggregate, an experimentally-determined tertiary structure of an INP has yet to be reported. How they function at the molecular level therefore remains unknown.
Here we have predicted a novel β-helical fold for the INP produced by the bacterium Pseudomonas borealis. The protein uses internal serine and glutamine ladders for stabilization and is predicted to dimerize via the burying of a solvent-exposed tyrosine ladder to make an intimate hydrophobic contact along the dimerization interface. The manner in which Pb INP dimerizes also allows for its multimerization, which could explain the aggregation-dependence of INP activity. Both sides of the Pb INP structure have tandem arrays of amino acids that can organize waters into the ice-like clathrate structures seen on antifreeze proteins.
Dimerization dramatically increases the 'ice-active' surface area of the protein by doubling its width, increasing its length, and presenting identical ice-forming surfaces on both sides of the protein. We suggest that this allows sufficient anchored clathrate waters to align on the INP surface to nucleate freezing. As Pb INP is highly similar to all known bacterial INPs, we predict its fold and mechanism of action will apply to these other INPs.
期刊介绍:
BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.