Spatial Distribution of Neurons Expressing Single, Double, and Triple Molecular Characteristics of Glutamatergic, Dopaminergic, or GABAergic Neurons in the Mouse Ventral Tegmental Area
{"title":"Spatial Distribution of Neurons Expressing Single, Double, and Triple Molecular Characteristics of Glutamatergic, Dopaminergic, or GABAergic Neurons in the Mouse Ventral Tegmental Area","authors":"Shaohua Ma, Hao Zhong, Xuemei Liu, Liping Wang","doi":"10.1007/s12031-023-02121-2","DOIUrl":null,"url":null,"abstract":"<div><p>The ventral tegmental area (VTA) is a heterogeneous midbrain area that plays a significant role in diverse neural processes such as reward, aversion, and motivation. The VTA contains three main neuronal populations, namely, dopamine (DA), γ-aminobutyric acid (GABA), and glutamate neurons, but some neurons exhibit combinatorial molecular characteristics of dopaminergic, GABAergic, or glutamatergic neurons. However, little information is available regarding detailed distribution of neurons with single, double, and triple molecular characteristics of glutamatergic, dopaminergic, or GABAergic neurons in mice. We present a topographical distribution map of three main neuronal populations expressing a single molecular characteristic of dopaminergic, GABAergic, or glutamatergic neurons, and four neuronal populations co-expressing double or triple molecular characteristics in combinatorial manners, in the mouse VTA, following analysis of triple fluorescent in situ hybridization for the simultaneous detection of tyrosine hydroxylase (TH, marker for dopaminergic neurons), vesicular glutamate transporter 2 (VGLUT2, marker for glutamatergic neurons), and glutamic acid decarboxylase 2 (GAD2, marker for GABAergic neurons) mRNA. We found that the vast majority of neurons expressed a single type of mRNA, and these neurons were intermingled with neurons co-expressing double or triple combinations of VGLUT2, TH, or GAD2 in the VTA. These seven neuronal populations were differentially distributed in the VTA sub-nuclei across the rostro-caudal and latero-medial axes. This histochemical study will lead to a deeper understanding of the complexity of neuronal molecular characteristics in different VTA sub-nuclei, and potentially facilitate clarification of diverse functions of the VTA.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"73 6","pages":"345 - 362"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-023-02121-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ventral tegmental area (VTA) is a heterogeneous midbrain area that plays a significant role in diverse neural processes such as reward, aversion, and motivation. The VTA contains three main neuronal populations, namely, dopamine (DA), γ-aminobutyric acid (GABA), and glutamate neurons, but some neurons exhibit combinatorial molecular characteristics of dopaminergic, GABAergic, or glutamatergic neurons. However, little information is available regarding detailed distribution of neurons with single, double, and triple molecular characteristics of glutamatergic, dopaminergic, or GABAergic neurons in mice. We present a topographical distribution map of three main neuronal populations expressing a single molecular characteristic of dopaminergic, GABAergic, or glutamatergic neurons, and four neuronal populations co-expressing double or triple molecular characteristics in combinatorial manners, in the mouse VTA, following analysis of triple fluorescent in situ hybridization for the simultaneous detection of tyrosine hydroxylase (TH, marker for dopaminergic neurons), vesicular glutamate transporter 2 (VGLUT2, marker for glutamatergic neurons), and glutamic acid decarboxylase 2 (GAD2, marker for GABAergic neurons) mRNA. We found that the vast majority of neurons expressed a single type of mRNA, and these neurons were intermingled with neurons co-expressing double or triple combinations of VGLUT2, TH, or GAD2 in the VTA. These seven neuronal populations were differentially distributed in the VTA sub-nuclei across the rostro-caudal and latero-medial axes. This histochemical study will lead to a deeper understanding of the complexity of neuronal molecular characteristics in different VTA sub-nuclei, and potentially facilitate clarification of diverse functions of the VTA.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.