Reliability Assessment Technology for Spacial Complex Mechanical System

Limin Shao, Shuli Yang, Ying Wang
{"title":"Reliability Assessment Technology for Spacial Complex Mechanical System","authors":"Limin Shao,&nbsp;Shuli Yang,&nbsp;Ying Wang","doi":"10.1007/s42423-022-00119-3","DOIUrl":null,"url":null,"abstract":"<div><p>Ground tests of spacial mechanical products have the characteristics of few test subsamples and expensive test cost, which often appear the cases of zero-failure samples. The classic reliability evaluation methods cannot adapt to the reliability assessment needs of small subsamples and zero-failure samples for high-reliability, long-life spacial complex mechanical products. The characteristics of failure rate functions of typical mechanical products such as mechanical structure, motors, bearings, gears, valves, and so on have been analyzed. Then the reliability evaluation methods of spacial complex mechanical system have been deduced, which has been combined the prior data of Bayesian method. Bayesian posterior distribution function of exponential distribution has been established by the method, which makes use of uniform distribution as a prior distribution, and combines with the convex characteristics of exponential distribution’s failure rate. Bayesian posterior distribution function of exponential distribution has been utilized in products, such as motors, valves, etc., which have characteristics of presenting exponential distribution. The evaluation range of accumulative failure-rate has been reduced by making use of accumulative failure-rate and predicted failure rate of exponential distribution And the weighted least-squares method has been used in parametric fitting based on accumulative failure-rate Then high-precision estimated failure rate of exponential distribution has been obtained. In this paper, the calculation example of compressor filled with spacial propellant has verified the feasibility of the calculation method. The problems of the reliability tests’ few subsamples and evaluating efficiency for expensive, complex spacial mechanical products have been solved effectively by the above proposed method.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 4","pages":"335 - 339"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00119-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ground tests of spacial mechanical products have the characteristics of few test subsamples and expensive test cost, which often appear the cases of zero-failure samples. The classic reliability evaluation methods cannot adapt to the reliability assessment needs of small subsamples and zero-failure samples for high-reliability, long-life spacial complex mechanical products. The characteristics of failure rate functions of typical mechanical products such as mechanical structure, motors, bearings, gears, valves, and so on have been analyzed. Then the reliability evaluation methods of spacial complex mechanical system have been deduced, which has been combined the prior data of Bayesian method. Bayesian posterior distribution function of exponential distribution has been established by the method, which makes use of uniform distribution as a prior distribution, and combines with the convex characteristics of exponential distribution’s failure rate. Bayesian posterior distribution function of exponential distribution has been utilized in products, such as motors, valves, etc., which have characteristics of presenting exponential distribution. The evaluation range of accumulative failure-rate has been reduced by making use of accumulative failure-rate and predicted failure rate of exponential distribution And the weighted least-squares method has been used in parametric fitting based on accumulative failure-rate Then high-precision estimated failure rate of exponential distribution has been obtained. In this paper, the calculation example of compressor filled with spacial propellant has verified the feasibility of the calculation method. The problems of the reliability tests’ few subsamples and evaluating efficiency for expensive, complex spacial mechanical products have been solved effectively by the above proposed method.

Abstract Image

空间复杂机械系统可靠性评估技术
空间机械产品的地面测试具有测试子样本少、测试成本高的特点,经常出现零失效样本的情况。对于高可靠性、长寿命的空间复杂机械产品,经典的可靠性评估方法不能适应小样本和零失效样本的可靠性评估需求。分析了机械结构、电机、轴承、齿轮、阀门等典型机械产品的故障率函数特性。然后结合贝叶斯方法的先验数据,推导了空间复杂机械系统的可靠性评估方法。该方法利用均匀分布作为先验分布,结合指数分布失效率的凸性特点,建立了指数分布的贝叶斯后验分布函数。指数分布的贝叶斯后验分布函数已被应用于电机、阀门等具有指数分布特征的产品中。利用指数分布的累积失效率和预测失效率,缩小了累积失效率的评价范围,并基于累积失效率采用加权最小二乘法进行参数拟合,得到了指数分布的高精度估计失效率。本文通过空间推进剂填充压缩机的计算实例,验证了该计算方法的可行性。该方法有效地解决了昂贵、复杂的空间机械产品可靠性试验子样本少、评价效率高等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信