Solution to the n-bubble problem on \(\mathbb {R}^1\) with log-concave density

Pub Date : 2023-09-28 DOI:10.1007/s10455-023-09927-8
John Ross
{"title":"Solution to the n-bubble problem on \\(\\mathbb {R}^1\\) with log-concave density","authors":"John Ross","doi":"10.1007/s10455-023-09927-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study the <i>n</i>-bubble problem on <span>\\(\\mathbb {R}^1\\)</span> with a prescribed density function <i>f</i> that is even, radially increasing, and satisfies a log-concavity requirement. Under these conditions, we find that isoperimetric solutions can be identified for an arbitrary number of regions, and that these solutions have a well-understood and regular structure. This generalizes recent work done on the density function <span>\\(|x |^p\\)</span> and stands in contrast to log-convex density functions which are known to have no such regular structure.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09927-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09927-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the n-bubble problem on \(\mathbb {R}^1\) with a prescribed density function f that is even, radially increasing, and satisfies a log-concavity requirement. Under these conditions, we find that isoperimetric solutions can be identified for an arbitrary number of regions, and that these solutions have a well-understood and regular structure. This generalizes recent work done on the density function \(|x |^p\) and stands in contrast to log-convex density functions which are known to have no such regular structure.

Abstract Image

分享
查看原文
具有对数凹密度的\(\mathbb{R}^1)上n气泡问题的解
我们研究了具有规定密度函数f的\(\mathbb{R}^1)上的n气泡问题,该密度函数f是均匀的、径向递增的,并且满足对数凹度要求。在这些条件下,我们发现对于任意数量的区域,等周解可以被识别,并且这些解具有被充分理解的规则结构。这推广了最近关于密度函数(|x|^p\)的工作,并与已知没有这种正则结构的对数凸密度函数形成了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信