Monogenity in totally real extensions of imaginary quadratic fields with an application to simplest quartic fields

IF 0.5 Q3 MATHEMATICS
István Gaál
{"title":"Monogenity in totally real extensions of imaginary quadratic fields with an application to simplest quartic fields","authors":"István Gaál","doi":"10.1007/s44146-023-00081-y","DOIUrl":null,"url":null,"abstract":"<div><p>We describe an efficient algorithm to calculate generators of power integral bases in composites of totally real fields and imaginary quadratic fields with coprime discriminants. We show that the calculation can be reduced to solving index form equations in the original totally real fields. We illustrate our method by investigating monogenity in the infinite parametric family of imaginary quadratic extensions of the simplest quartic fields.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"3 - 12"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00081-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00081-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe an efficient algorithm to calculate generators of power integral bases in composites of totally real fields and imaginary quadratic fields with coprime discriminants. We show that the calculation can be reduced to solving index form equations in the original totally real fields. We illustrate our method by investigating monogenity in the infinite parametric family of imaginary quadratic extensions of the simplest quartic fields.

虚二次域全实扩展中的单调性及其在最简四次域中的应用
我们描述了一种用互质判别式计算全实场和虚二次场复合中幂积分基生成元的有效算法。我们证明了计算可以简化为求解原始全实域中的指数形式方程。我们通过研究最简单四次域的虚二次扩张的无限参数族中的单胚性来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信