On preservers of pseudo spectrum of skew Jordan matrix products

IF 0.5 Q3 MATHEMATICS
M. Bendaoud, A. Benyouness, A. Cade, M. Sarih
{"title":"On preservers of pseudo spectrum of skew Jordan matrix products","authors":"M. Bendaoud,&nbsp;A. Benyouness,&nbsp;A. Cade,&nbsp;M. Sarih","doi":"10.1007/s44146-022-00052-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {M}_n\\)</span> be the space of \n<span>\\(n \\times n\\)</span> complex matrices, \nand for <span>\\(\\varepsilon &gt; 0\\)</span> and \n<span>\\(A \\in \\mathcal {M}_n\\)</span>, let \n<span>\\(\\sigma _\\varepsilon (A)\\)</span> denote the \n<span>\\(\\varepsilon \\)</span>-pseudo \nspectrum of <i>A</i>. Maps \n<span>\\(\\Phi \\)</span> on \n<span>\\(\\mathcal {M}_n\\)</span> which \npreserve the skew Jordan semi-triple product of matrices in a sense that\n</p><div><div><span>$$\\sigma _\\varepsilon(\\Phi(A)\\Phi(B)*\\Phi(A))= \\sigma _\\varepsilon (AB*A)\\quad \\quad (A,B \\in \\mathcal {M}_n)$$</span></div></div><p>\nare characterized, with no surjectivity assumption on them. Analogous description is obtained for the skew Jordan product on matrices, and its variant of infinite dimension is also noted.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"88 3-4","pages":"787 - 796"},"PeriodicalIF":0.5000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-022-00052-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathcal {M}_n\) be the space of \(n \times n\) complex matrices, and for \(\varepsilon > 0\) and \(A \in \mathcal {M}_n\), let \(\sigma _\varepsilon (A)\) denote the \(\varepsilon \)-pseudo spectrum of A. Maps \(\Phi \) on \(\mathcal {M}_n\) which preserve the skew Jordan semi-triple product of matrices in a sense that

$$\sigma _\varepsilon(\Phi(A)\Phi(B)*\Phi(A))= \sigma _\varepsilon (AB*A)\quad \quad (A,B \in \mathcal {M}_n)$$

are characterized, with no surjectivity assumption on them. Analogous description is obtained for the skew Jordan product on matrices, and its variant of infinite dimension is also noted.

关于偏斜Jordan矩阵乘积伪谱的保持器
让\(\mathcal{M}_n\)是\(n\times n\)复矩阵的空间,对于\(\varepsilon>;0\)和\(A\in\mathcal{M}_n\),设\(\sigma\varepsilon(A)\)表示A的\(\varepsilon\)-伪谱{M}_n\)在$$\sigma\varepsilon(\Phi(a)\Phi(B)*\Phi(a))=\sigma\\varepsilo(AB*a)\quad\quad(a,B\in\mathcal{M}_n)$$是有特征的,对它们没有满射性假设。得到了矩阵上偏斜Jordan积的相似描述,并注意到它的无穷维变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信