Compactness of harmonic maps of surfaces with regular nodes

Pub Date : 2023-09-25 DOI:10.1007/s10455-023-09926-9
Woongbae Park
{"title":"Compactness of harmonic maps of surfaces with regular nodes","authors":"Woongbae Park","doi":"10.1007/s10455-023-09926-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we formulate and prove a general compactness theorem for harmonic maps of Riemann surfaces using Deligne–Mumford moduli space and families of curves. The main theorem shows that given a sequence of harmonic maps over a sequence of complex curves, there is a family of curves and a subsequence such that both the domains and the maps converge with the singular set consisting of only “non-regular” nodes. This provides a sufficient condition for a neck having zero energy and zero length. As a corollary, the following known fact can be proved: If all domains are diffeomorphic to <span>\\(S^2\\)</span>, both energy identity and zero distance bubbling hold.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09926-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we formulate and prove a general compactness theorem for harmonic maps of Riemann surfaces using Deligne–Mumford moduli space and families of curves. The main theorem shows that given a sequence of harmonic maps over a sequence of complex curves, there is a family of curves and a subsequence such that both the domains and the maps converge with the singular set consisting of only “non-regular” nodes. This provides a sufficient condition for a neck having zero energy and zero length. As a corollary, the following known fact can be proved: If all domains are diffeomorphic to \(S^2\), both energy identity and zero distance bubbling hold.

Abstract Image

分享
查看原文
具有正则节点的曲面调和映射的紧性
本文利用Deligne–Mumford模空间和曲线族,建立并证明了黎曼曲面调和映射的一般紧性定理。主要定理表明,给定复曲线序列上的调和映射序列,存在一个曲线族和一个子序列,使得域和映射都收敛于仅由“非正则”节点组成的奇异集。这为具有零能量和零长度的颈部提供了充分的条件。作为推论,可以证明以下已知事实:如果所有域对\(S^2)都是微分同胚的,则能量恒等式和零距离冒泡都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信