Fixed Point Theorem: variants, affine context and some consequences

IF 1.2 3区 数学 Q1 MATHEMATICS
Anderson L. A. de Araujo, Edir J. F. Leite
{"title":"Fixed Point Theorem: variants, affine context and some consequences","authors":"Anderson L. A. de Araujo,&nbsp;Edir J. F. Leite","doi":"10.1007/s43034-023-00304-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer’s Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine <span>\\(L^{p}\\)</span> functional <span>\\(\\mathcal {E}_{p,\\Omega }^p\\)</span> introduced by Lutwak et al. (J Differ Geom 62:17–38, 2002) for <span>\\(p &gt; 1\\)</span> that is non convex and does not represent a norm in <span>\\(\\mathbb {R}^m\\)</span>. Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals <span>\\(\\Phi _m\\)</span> on a subspace <span>\\(W_m\\)</span> of dimension <i>m</i> given by </p><div><div><span>$$\\begin{aligned} \\Phi _m(u)=\\frac{1}{p}\\mathcal {E}_{p, \\Omega }^{p}(u) - \\frac{1}{\\alpha }\\Vert u\\Vert ^{\\alpha }_{L^\\alpha (\\Omega )}- \\int _{\\Omega }f(x)u \\textrm{d}x, \\end{aligned}$$</span></div></div><p>where <span>\\(1&lt;\\alpha &lt;p\\)</span>, <span>\\([W_m]_{m \\in \\mathbb {N}}\\)</span> is dense in <span>\\(W^{1,p}_0(\\Omega )\\)</span> and <span>\\(f\\in L^{p'}(\\Omega )\\)</span>, with <span>\\(\\frac{1}{p}+\\frac{1}{p'}=1\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00304-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00304-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer’s Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine \(L^{p}\) functional \(\mathcal {E}_{p,\Omega }^p\) introduced by Lutwak et al. (J Differ Geom 62:17–38, 2002) for \(p > 1\) that is non convex and does not represent a norm in \(\mathbb {R}^m\). Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals \(\Phi _m\) on a subspace \(W_m\) of dimension m given by

$$\begin{aligned} \Phi _m(u)=\frac{1}{p}\mathcal {E}_{p, \Omega }^{p}(u) - \frac{1}{\alpha }\Vert u\Vert ^{\alpha }_{L^\alpha (\Omega )}- \int _{\Omega }f(x)u \textrm{d}x, \end{aligned}$$

where \(1<\alpha <p\), \([W_m]_{m \in \mathbb {N}}\) is dense in \(W^{1,p}_0(\Omega )\) and \(f\in L^{p'}(\Omega )\), with \(\frac{1}{p}+\frac{1}{p'}=1\).

不动点定理:变式、仿射上下文和一些结果
在这项工作中,作为一般Brouwer不动点定理的结果,我们将提出仿射和经典背景下的变体不动点定理。例如,仿射结果将允许对仿射球进行处理,仿射球是通过仿射\(L^{p}\)泛函\(\mathcal定义的{E}_{p,\Omega}^p\),由Lutwak等人(J Differ Geom 62:17–382002)为非凸且不表示\(\mathbb{R}^m\)中的范数的\(p>;1\)引入。此外,我们讨论了一点上不连续泛函的结果。作为一个应用,我们研究了由$$\beagin{aligned}\Phi _m(u)=\frac{1}{p}\mathcal给出的维数为m的子空间\(W_m)上的仿射泛函序列\(\Phi _m\)的临界点{E}_{p,\Omega}^{p}(u)-\frac{1}{\alpha}\Vert u\Vert^{\aalpha}_{L^\alpha(\Omega)}-\int _{\Omega}f(x)u\textrm{d}x,\end{aligned}$$其中\(1<;\alpha<;p\),\([W_m]_{m\in\mathbb{N}}\)在\(W)中稠密^{1,p}_0(\Omega)\)和\(f\在L^{p'}(\Omega\)中,其中\(\frac{1}{p}+\frac{1}{p'}=1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信