Constructions of helicoidal minimal surfaces and minimal annuli in \(\widetilde{E(2)}\)

Pub Date : 2022-08-23 DOI:10.1007/s10455-022-09871-z
Yiming Zang
{"title":"Constructions of helicoidal minimal surfaces and minimal annuli in \\(\\widetilde{E(2)}\\)","authors":"Yiming Zang","doi":"10.1007/s10455-022-09871-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we construct two one-parameter families of properly embedded minimal surfaces in a three-dimensional Lie group <span>\\(\\widetilde{E(2)}\\)</span>, which is the universal covering of the group of rigid motions of Euclidean plane endowed with a left-invariant Riemannian metric. The first one can be seen as a family of helicoids, while the second one is a family of catenoidal minimal surfaces. The main tool that we use for the construction of these surfaces is a Weierstrass-type representation introduced by Meeks, Mira, Pérez and Ros for minimal surfaces in Lie groups of dimension three. In the end, we study the limit of the catenoidal minimal surfaces. As an application of this limit case, we get a new proof of a half-space theorem for minimal surfaces in <span>\\(\\widetilde{E(2)}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09871-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we construct two one-parameter families of properly embedded minimal surfaces in a three-dimensional Lie group \(\widetilde{E(2)}\), which is the universal covering of the group of rigid motions of Euclidean plane endowed with a left-invariant Riemannian metric. The first one can be seen as a family of helicoids, while the second one is a family of catenoidal minimal surfaces. The main tool that we use for the construction of these surfaces is a Weierstrass-type representation introduced by Meeks, Mira, Pérez and Ros for minimal surfaces in Lie groups of dimension three. In the end, we study the limit of the catenoidal minimal surfaces. As an application of this limit case, we get a new proof of a half-space theorem for minimal surfaces in \(\widetilde{E(2)}\).

分享
查看原文
{E(2)}\中螺旋极小曲面和极小环面的构造
在本文中,我们构造了三维李群中适当嵌入的极小曲面的两个单参数族,李群是具有左不变黎曼度量的欧几里得平面的刚性运动群的泛覆盖。第一个可以看作是螺旋面的一个族,而第二个是链状极小曲面的一个族。我们用于构造这些曲面的主要工具是Meeks、Mira、Pérez和Ros为三维李群中的最小曲面引入的Weierstrass型表示。最后,我们研究了链状极小曲面的极限。作为这个极限情形的一个应用,我们得到了\(\widetilde{E(2)}\)中极小曲面的半空间定理的一个新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信