Distinguished limits and drifts: between nonuniqueness and universality

IF 0.5 Q3 MATHEMATICS
V. A. Vladimirov
{"title":"Distinguished limits and drifts: between nonuniqueness and universality","authors":"V. A. Vladimirov","doi":"10.1007/s40316-021-00177-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a version of the two-timing method which describes various ‘slow’ effects caused by externally imposed ‘fast’ oscillations. Such small oscillations are often called <i>vibrations</i> and the research area can be referred as <i>vibrodynamics</i>. The governing equations represent a generic system of first-order ODEs containing a prescribed oscillating velocity <span>\\({\\varvec{u}}\\)</span>, given in a general form. Two basic small parameters stand in for the inverse frequency and the ratio of two time-scales; they appear in equations as regular perturbations. The proper connections between these parameters yield the <i>distinguished limits</i>, leading to the existence of closed systems of asymptotic equations. The aim of this paper is twofold: (i) to clarify (or to demystify) the choices of a slow variable, and (ii) to give a coherent exposition which is accessible for practical users in applied mathematics, sciences and engineering. We focus our study on the usually hidden aspects of the two-timing method such as the <i>uniqueness or multiplicity of distinguished limits</i> and <i>universal structures of averaged equations</i>. The main result is the demonstration that there are two (and only two) different distinguished limits. The explicit instruction for practically solving ODEs for different classes of <span>\\({\\varvec{u}}\\)</span> is presented. The key roles of drift velocity and the qualitatively new appearance of the linearized equations are discussed. To illustrate the broadness of our approach, two examples from mathematical biology are shown.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 1","pages":"77 - 91"},"PeriodicalIF":0.5000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00177-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a version of the two-timing method which describes various ‘slow’ effects caused by externally imposed ‘fast’ oscillations. Such small oscillations are often called vibrations and the research area can be referred as vibrodynamics. The governing equations represent a generic system of first-order ODEs containing a prescribed oscillating velocity \({\varvec{u}}\), given in a general form. Two basic small parameters stand in for the inverse frequency and the ratio of two time-scales; they appear in equations as regular perturbations. The proper connections between these parameters yield the distinguished limits, leading to the existence of closed systems of asymptotic equations. The aim of this paper is twofold: (i) to clarify (or to demystify) the choices of a slow variable, and (ii) to give a coherent exposition which is accessible for practical users in applied mathematics, sciences and engineering. We focus our study on the usually hidden aspects of the two-timing method such as the uniqueness or multiplicity of distinguished limits and universal structures of averaged equations. The main result is the demonstration that there are two (and only two) different distinguished limits. The explicit instruction for practically solving ODEs for different classes of \({\varvec{u}}\) is presented. The key roles of drift velocity and the qualitatively new appearance of the linearized equations are discussed. To illustrate the broadness of our approach, two examples from mathematical biology are shown.

可分辨的极限和漂移:在非唯一性和普遍性之间
本文讨论了两种定时方法的一个版本,该方法描述了由外部施加的“快”振荡引起的各种“慢”效应。这种小的振荡通常被称为振动,研究领域可以称为振动动力学。控制方程代表一阶常微分方程的一般系统,该系统包含以一般形式给出的规定振荡速度({\varvec{u}})。两个基本的小参数代表反频率和两个时间尺度的比值;它们在方程中表现为规则扰动。这些参数之间的适当联系产生了可分辨的极限,从而导致渐近方程组的闭合系统的存在。本文的目的有两个:(i)澄清(或揭开)慢变量的选择,以及(ii)给出一个连贯的阐述,供应用数学、科学和工程领域的实际用户使用。我们将研究的重点放在两个时间方法通常隐藏的方面,如可分辨极限的唯一性或多重性以及平均方程的普遍结构。主要结果是证明了存在两个(并且只有两个)不同的可分辨极限。给出了实际求解不同类\({\varvec{u}})的常微分方程的显式指令。讨论了漂移速度的关键作用和线性化方程的定性新出现。为了说明我们方法的广泛性,展示了两个来自数学生物学的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信