Lie symmetry analysis and some new exact solutions of the Fokker–Planck equation

IF 0.9 Q2 MATHEMATICS
Samar Al-Nassar, Mehdi Nadjafikhah
{"title":"Lie symmetry analysis and some new exact solutions of the Fokker–Planck equation","authors":"Samar Al-Nassar,&nbsp;Mehdi Nadjafikhah","doi":"10.1007/s40065-023-00435-y","DOIUrl":null,"url":null,"abstract":"<div><p>The classical symmetry method is often employed to find precise solutions to differential equations. This method has yielded several new symmetry reductions and exact solutions for numerous theoretically and physically relevant partial differential equations. These results, as well as the symmetries of a variety of specific cases of the Fokker–Planck equation, were presented in this study using the classical Lie symmetry approach. New exact solutions to the Fokker–Planck equations are provided for each of the six cases.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"12 3","pages":"467 - 482"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-023-00435-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-023-00435-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The classical symmetry method is often employed to find precise solutions to differential equations. This method has yielded several new symmetry reductions and exact solutions for numerous theoretically and physically relevant partial differential equations. These results, as well as the symmetries of a variety of specific cases of the Fokker–Planck equation, were presented in this study using the classical Lie symmetry approach. New exact solutions to the Fokker–Planck equations are provided for each of the six cases.

Abstract Image

李对称性分析和Fokker-Planck方程的一些新的精确解
经典对称方法经常被用来寻找微分方程的精确解。这种方法已经为许多理论和物理相关的偏微分方程产生了几个新的对称性约简和精确解。这些结果,以及福克-普朗克方程的各种特定情况的对称性,在本研究中使用经典的李对称方法给出。对于这六种情况中的每一种,都提供了福克-普朗克方程的新的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信