{"title":"A combinatorial description of the monodromy of log curves","authors":"Bruno Chiarellotto, Pietro Gatti","doi":"10.1007/s40316-020-00133-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\)</span> be an algebraically closed field of characteristic <span>\\(0\\)</span>. For a log curve <span>\\(X/k^{\\times }\\)</span> over the standard log point (Kato in Int J Math 11(2):215–232, 2000), we define (algebraically) a combinatorial monodromy operator on its log-de Rham cohomology group. The invariant part of this action has a cohomological description, it is the Du Bois cohomology of <span>\\(X\\)</span> (Du Bois in Bull Soc Math Fr 109(1):41–81, 1981). This can be seen as an analogue of the invariant cycles exact sequence for a semistable family (as in the complex, étale and <span>\\(p\\)</span>-adic settings). In the specific case in which <span>\\(k={\\mathbb {C}}\\)</span> and <span>\\(X\\)</span> is the central fiber of a semistable degeneration over the complex disc, our construction recovers the topological monodromy and the classical local invariant cycles theorem. In particular, our description allows an explicit computation of the monodromy operator in this setting.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"161 - 184"},"PeriodicalIF":0.5000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00133-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00133-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(k\) be an algebraically closed field of characteristic \(0\). For a log curve \(X/k^{\times }\) over the standard log point (Kato in Int J Math 11(2):215–232, 2000), we define (algebraically) a combinatorial monodromy operator on its log-de Rham cohomology group. The invariant part of this action has a cohomological description, it is the Du Bois cohomology of \(X\) (Du Bois in Bull Soc Math Fr 109(1):41–81, 1981). This can be seen as an analogue of the invariant cycles exact sequence for a semistable family (as in the complex, étale and \(p\)-adic settings). In the specific case in which \(k={\mathbb {C}}\) and \(X\) is the central fiber of a semistable degeneration over the complex disc, our construction recovers the topological monodromy and the classical local invariant cycles theorem. In particular, our description allows an explicit computation of the monodromy operator in this setting.
设\(k\)是特征\(0\)的代数闭域。对于标准对数点上的对数曲线\(X/k^{\times}\)(Int J Math 11(2):215–2322000中的Kato),我们在其log-de-Ram上同调群上定义了(代数)组合单调算子。这个作用的不变部分有一个上同调描述,它是\(X\)的杜波依斯上同调(Du Bois in Bull Soc Math Fr 109(1):41–811981)。这可以被视为半稳定族的不变循环精确序列的类似物(如在复数、étale和\(p\)adic设置中)。在\(k={\mathbb{C}}\)和\(X\)是复圆盘上半稳定退化的中心纤维的特定情况下,我们的构造恢复了拓扑单调性和经典的局部不变环定理。特别地,我们的描述允许在这种设置下显式计算单调算子。
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.