{"title":"Effect of asynchronous execution and imperfect communication on max-sum belief propagation","authors":"Roie Zivan, Ben Rachmut, Omer Perry, William Yeoh","doi":"10.1007/s10458-023-09621-w","DOIUrl":null,"url":null,"abstract":"<div><p>Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization problems. It has been studied theoretically and empirically, extended to versions that improve solution quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented both as synchronous and asynchronous algorithms. However, neither the differences in the performance of the two execution versions nor the implications of imperfect communication (i.e., massage delay and message loss) on the two versions have been investigated to the best of our knowledge. We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions of the algorithm, with and without message delay or loss; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the differences between the two versions. Our results indicate that, in contrast to recent published results indicating that message latency has a drastic (positive) effect on the performance of distributed local search algorithms, the effect of imperfect communication on Damped Max-sum (DMS) is minor. The version of Max-sum that includes both damping and splitting of function nodes converges to high quality solutions very fast, even when a large percentage of the messages sent by agents do not arrive at their destinations. Moreover, the quality of solutions in the different versions of DMS is dependent of the number of messages that were received by the agents, regardless of the amount of time they were delayed or if these messages are only a portion of the total number of messages that was sent by the agents.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09621-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization problems. It has been studied theoretically and empirically, extended to versions that improve solution quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented both as synchronous and asynchronous algorithms. However, neither the differences in the performance of the two execution versions nor the implications of imperfect communication (i.e., massage delay and message loss) on the two versions have been investigated to the best of our knowledge. We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions of the algorithm, with and without message delay or loss; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the differences between the two versions. Our results indicate that, in contrast to recent published results indicating that message latency has a drastic (positive) effect on the performance of distributed local search algorithms, the effect of imperfect communication on Damped Max-sum (DMS) is minor. The version of Max-sum that includes both damping and splitting of function nodes converges to high quality solutions very fast, even when a large percentage of the messages sent by agents do not arrive at their destinations. Moreover, the quality of solutions in the different versions of DMS is dependent of the number of messages that were received by the agents, regardless of the amount of time they were delayed or if these messages are only a portion of the total number of messages that was sent by the agents.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.