Effect of asynchronous execution and imperfect communication on max-sum belief propagation

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Roie Zivan, Ben Rachmut, Omer Perry, William Yeoh
{"title":"Effect of asynchronous execution and imperfect communication on max-sum belief propagation","authors":"Roie Zivan,&nbsp;Ben Rachmut,&nbsp;Omer Perry,&nbsp;William Yeoh","doi":"10.1007/s10458-023-09621-w","DOIUrl":null,"url":null,"abstract":"<div><p>Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization problems. It has been studied theoretically and empirically, extended to versions that improve solution quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented both as synchronous and asynchronous algorithms. However, neither the differences in the performance of the two execution versions nor the implications of imperfect communication (i.e., massage delay and message loss) on the two versions have been investigated to the best of our knowledge. We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions of the algorithm, with and without message delay or loss; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the differences between the two versions. Our results indicate that, in contrast to recent published results indicating that message latency has a drastic (positive) effect on the performance of distributed local search algorithms, the effect of imperfect communication on Damped Max-sum (DMS) is minor. The version of Max-sum that includes both damping and splitting of function nodes converges to high quality solutions very fast, even when a large percentage of the messages sent by agents do not arrive at their destinations. Moreover, the quality of solutions in the different versions of DMS is dependent of the number of messages that were received by the agents, regardless of the amount of time they were delayed or if these messages are only a portion of the total number of messages that was sent by the agents.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09621-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization problems. It has been studied theoretically and empirically, extended to versions that improve solution quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented both as synchronous and asynchronous algorithms. However, neither the differences in the performance of the two execution versions nor the implications of imperfect communication (i.e., massage delay and message loss) on the two versions have been investigated to the best of our knowledge. We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions of the algorithm, with and without message delay or loss; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the differences between the two versions. Our results indicate that, in contrast to recent published results indicating that message latency has a drastic (positive) effect on the performance of distributed local search algorithms, the effect of imperfect communication on Damped Max-sum (DMS) is minor. The version of Max-sum that includes both damping and splitting of function nodes converges to high quality solutions very fast, even when a large percentage of the messages sent by agents do not arrive at their destinations. Moreover, the quality of solutions in the different versions of DMS is dependent of the number of messages that were received by the agents, regardless of the amount of time they were delayed or if these messages are only a portion of the total number of messages that was sent by the agents.

Abstract Image

异步执行和不完全通信对最大和置信传播的影响
最大和是置信传播的一个版本,适用于解决分布式约束优化问题。它已经进行了理论和实证研究,并扩展到提高解决方案质量和快速收敛的版本,适用于多个分布式应用程序。该算法分为同步算法和异步算法。然而,据我们所知,无论是两个执行版本的性能差异,还是不完美通信(即消息延迟和消息丢失)对这两个版本的影响,都没有得到研究。我们通过以下方式为Max sum的知识体系做出贡献:(1)建立算法的两个执行版本之间的理论差异,侧重于信念的构建;(2) 在有和没有消息延迟或丢失的情况下,实证评估两个版本的算法生成的解决方案之间的差异;以及(3)从理论和经验上确定阻尼对减少两个版本之间的差异的积极影响。我们的结果表明,与最近发表的表明消息延迟对分布式本地搜索算法的性能有显著(积极)影响的结果相反,不完美通信对阻尼最大和(DMS)的影响很小。包括阻尼和功能节点分裂的Max sum版本可以很快收敛到高质量的解决方案,即使代理发送的大部分消息没有到达目的地。此外,不同版本的DMS中的解决方案的质量取决于代理接收到的消息数量,而不管它们被延迟了多少时间,或者这些消息是否只是代理发送的消息总数的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信