How to generate data for acronym detection and expansion

Sing Choi, Piyush Puranik, Binay Dahal, Kazem Taghva
{"title":"How to generate data for acronym detection and expansion","authors":"Sing Choi,&nbsp;Piyush Puranik,&nbsp;Binay Dahal,&nbsp;Kazem Taghva","doi":"10.1007/s43674-021-00024-6","DOIUrl":null,"url":null,"abstract":"<div><p>Finding the definitions of acronyms in any given text has been an on going problem with multiple proposed solutions. In this paper, we use the bidirectional encoder representations from transformers question answer model provided by Google to find acronym definitions in a given text. Given an acronym and a passage containing the acronym, our model is expected to find the expansion of the acronym in the passage. Through our experiments, we show that this model can correctly predict 94% of acronym expansions assuming a Jaro–Winkler threshold distance of greater than 0.8. One of the main contributions of this paper is a systematic method to create datasets and use them to build a corpus for acronym expansion. Our approach for data generation can be used in many applications where there are no standard datasets.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00024-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finding the definitions of acronyms in any given text has been an on going problem with multiple proposed solutions. In this paper, we use the bidirectional encoder representations from transformers question answer model provided by Google to find acronym definitions in a given text. Given an acronym and a passage containing the acronym, our model is expected to find the expansion of the acronym in the passage. Through our experiments, we show that this model can correctly predict 94% of acronym expansions assuming a Jaro–Winkler threshold distance of greater than 0.8. One of the main contributions of this paper is a systematic method to create datasets and use them to build a corpus for acronym expansion. Our approach for data generation can be used in many applications where there are no standard datasets.

如何生成首字母缩略词检测和扩展数据
在任何给定的文本中找到缩写词的定义一直是一个持续的问题,有多种建议的解决方案。在本文中,我们使用谷歌提供的transformers问答模型中的双向编码器表示来查找给定文本中的首字母缩略词定义。给定一个首字母缩写词和一段包含该首字母缩写的文章,我们的模型有望在文章中找到首字母缩写语的扩展。通过我们的实验,我们表明,假设Jaro–Winkler阈值距离大于0.8,该模型可以正确预测94%的首字母缩略词扩展。本文的主要贡献之一是一种系统的方法来创建数据集,并使用它们来构建首字母缩略词扩展的语料库。我们的数据生成方法可以用于许多没有标准数据集的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信