Temporal and Spatial Variations of Satellite-Based Aerosol Optical Depths, Angstrom Exponent, Single Scattering Albedo, and Ultraviolet-Aerosol Index over Five Polluted and Less-Polluted Cities of Northern India: Impact of Urbanization and Climate Change
{"title":"Temporal and Spatial Variations of Satellite-Based Aerosol Optical Depths, Angstrom Exponent, Single Scattering Albedo, and Ultraviolet-Aerosol Index over Five Polluted and Less-Polluted Cities of Northern India: Impact of Urbanization and Climate Change","authors":"Rolly Singh, Vikram Singh, Alok Sagar Gautam, Sneha Gautam, Manish Sharma, Pushpendra Singh Soni, Karan Singh, Alka Gautam","doi":"10.1007/s41810-022-00168-z","DOIUrl":null,"url":null,"abstract":"<div><p>It is widely acknowledged that factors such as population growth, urbanization's quick speed, economic growth, and industrialization all have a role in the atmosphere's rising aerosol concentration. In the current work, we assessed and discussed the findings of a thorough analysis of the temporal and spatial variations of satellite-based aerosol optical parameters such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Single Scattering Albedo (SSA), and Ultraviolet-Aerosol Index (UV-AI), and their concentration have been investigated in this study over five polluted and less-polluted cities of northern India during the last decade 2011–2020. The temporal variation of aerosol optical parameters for AOD ranging from 0.2 to 1.8 with decadal mean 0.86 ± 0.36 for Patna region shows high value with a decadal increasing trend over the study area due to rise in aerosols combustion of fossil fuels, huge vehicles traffic, and biomass over the past ten years. The temporal variation of AE ranging from 0.3 to 1.8 with decadal mean 1.72 ± 0.11 for Agra region shows high value as compared to other study areas, which indicates a comparatively higher level of fine-mode aerosols at Agra. The temporal variation of SSA ranging from 0.8 to 0.9 with decadal mean 0.92 ± 0.02 for SSA shows no discernible decadal pattern at any of the locations. The temporal variation of UV-AI ranging from -1.01 to 2.36 with decadal mean 0.59 ± 0.06 for UV-AI demonstrates a rising tendency, with a noticeable rise in Ludhiana, which suggests relative dominance of absorbing dust aerosols over Ludhiana. Further, to understand the impact of emerging activities, analyses were done in seasonality. For this aerosol climatology was derived for different seasons, i.e., Winter, Pre-Monsoon, Monsoon, and Post-Monsoon. High aerosol was observed in Winter for the study areas Patna, Delhi, and Agra which indicated the particles major dominance of burning aerosol from biomass; and the worst in Monsoon and Post-Monsoon for the Tehri Garhwal and Ludhiana study areas which indicated most of the aerosol concentration is removed by rainfall. After that, we analyzed the correlation among all the parameters to better understand the temporal and spatial distribution characteristics of aerosols over the selected region. The value of r for AOD (550 nm) for regions 2 and 1(0.80) shows a strong positive correlation and moderately positive for the regions 3 and 1 (0.64), mostly as a result of mineral dust carried from arid western regions. The value of r for AE (412/470 nm) for region 3 and (0.40) shows a moderately positive correlation, which is the resultant of the dominance of fine-mode aerosol and negative for the regions 5 and 1 (− 0.06). The value of r for SSA (500 nm) for regions 2 and 1 (0.63) shows a moderately positive correlation, which explains the rise in big aerosol particles, which scatters sun energy more efficiently, and the value of r for UV-AI for regions 1 and 2 shows a strong positive correlation (0.77) and moderately positive for the regions 3 and 1 (0.46) which indicates the absorbing aerosols present over the study region.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 1","pages":"131 - 149"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-022-00168-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
It is widely acknowledged that factors such as population growth, urbanization's quick speed, economic growth, and industrialization all have a role in the atmosphere's rising aerosol concentration. In the current work, we assessed and discussed the findings of a thorough analysis of the temporal and spatial variations of satellite-based aerosol optical parameters such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Single Scattering Albedo (SSA), and Ultraviolet-Aerosol Index (UV-AI), and their concentration have been investigated in this study over five polluted and less-polluted cities of northern India during the last decade 2011–2020. The temporal variation of aerosol optical parameters for AOD ranging from 0.2 to 1.8 with decadal mean 0.86 ± 0.36 for Patna region shows high value with a decadal increasing trend over the study area due to rise in aerosols combustion of fossil fuels, huge vehicles traffic, and biomass over the past ten years. The temporal variation of AE ranging from 0.3 to 1.8 with decadal mean 1.72 ± 0.11 for Agra region shows high value as compared to other study areas, which indicates a comparatively higher level of fine-mode aerosols at Agra. The temporal variation of SSA ranging from 0.8 to 0.9 with decadal mean 0.92 ± 0.02 for SSA shows no discernible decadal pattern at any of the locations. The temporal variation of UV-AI ranging from -1.01 to 2.36 with decadal mean 0.59 ± 0.06 for UV-AI demonstrates a rising tendency, with a noticeable rise in Ludhiana, which suggests relative dominance of absorbing dust aerosols over Ludhiana. Further, to understand the impact of emerging activities, analyses were done in seasonality. For this aerosol climatology was derived for different seasons, i.e., Winter, Pre-Monsoon, Monsoon, and Post-Monsoon. High aerosol was observed in Winter for the study areas Patna, Delhi, and Agra which indicated the particles major dominance of burning aerosol from biomass; and the worst in Monsoon and Post-Monsoon for the Tehri Garhwal and Ludhiana study areas which indicated most of the aerosol concentration is removed by rainfall. After that, we analyzed the correlation among all the parameters to better understand the temporal and spatial distribution characteristics of aerosols over the selected region. The value of r for AOD (550 nm) for regions 2 and 1(0.80) shows a strong positive correlation and moderately positive for the regions 3 and 1 (0.64), mostly as a result of mineral dust carried from arid western regions. The value of r for AE (412/470 nm) for region 3 and (0.40) shows a moderately positive correlation, which is the resultant of the dominance of fine-mode aerosol and negative for the regions 5 and 1 (− 0.06). The value of r for SSA (500 nm) for regions 2 and 1 (0.63) shows a moderately positive correlation, which explains the rise in big aerosol particles, which scatters sun energy more efficiently, and the value of r for UV-AI for regions 1 and 2 shows a strong positive correlation (0.77) and moderately positive for the regions 3 and 1 (0.46) which indicates the absorbing aerosols present over the study region.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.