An Extension of the \(\mathfrak {sl}_2\) Weight System to Graphs with \(n \le 8\) Vertices

Q3 Mathematics
Evgeny Krasilnikov
{"title":"An Extension of the \\(\\mathfrak {sl}_2\\) Weight System to Graphs with \\(n \\le 8\\) Vertices","authors":"Evgeny Krasilnikov","doi":"10.1007/s40598-021-00187-7","DOIUrl":null,"url":null,"abstract":"<div><p>Chord diagrams and 4-term relations were introduced by Vassiliev in the late 1980. Various constructions of weight systems are known, and each of such constructions gives rise to a knot invariant. In particular, weight systems may be constructed from Lie algebras as well as from the so-called 4-invariants of graphs. A Chmutov–Lando theorem states that the value of the weight system constructed from the Lie algebra <span>\\(\\mathfrak {sl}_2\\)</span> on a chord diagram depends on the intersection graph of the diagram, rather than the diagram itself. This inspired a question due to Lando about whether it is possible to extend the weight system <span>\\(\\mathfrak {sl}_2\\)</span> to a graph invariant satisfying the four term relations for graphs. We show that for all graphs with up to 8 vertices such an extension exists and is unique, thus answering in affirmative to Lando’s question for small graphs.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40598-021-00187-7.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arnold Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40598-021-00187-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Chord diagrams and 4-term relations were introduced by Vassiliev in the late 1980. Various constructions of weight systems are known, and each of such constructions gives rise to a knot invariant. In particular, weight systems may be constructed from Lie algebras as well as from the so-called 4-invariants of graphs. A Chmutov–Lando theorem states that the value of the weight system constructed from the Lie algebra \(\mathfrak {sl}_2\) on a chord diagram depends on the intersection graph of the diagram, rather than the diagram itself. This inspired a question due to Lando about whether it is possible to extend the weight system \(\mathfrak {sl}_2\) to a graph invariant satisfying the four term relations for graphs. We show that for all graphs with up to 8 vertices such an extension exists and is unique, thus answering in affirmative to Lando’s question for small graphs.

\(\mathfrak的一个扩展{sl}_2\)具有\(n\le 8\)顶点的图的权重系统
弦图和四项关系是瓦西里耶夫在1980年末提出的。权重系统的各种构造是已知的,并且每种这样的构造都产生结不变量。特别地,权重系统可以由李代数以及所谓的图的4变量构造。Chmutov–Lando定理指出,由李代数构造的权重系统的值{sl}_2\)弦图取决于图的交集图,而不是图本身。这激发了Lando提出的一个问题,即是否有可能扩展重量系统{sl}_2\)到满足图的四项关系的图不变量。我们证明了对于所有具有8个顶点的图,这样的扩展是存在的并且是唯一的,从而肯定地回答了Lando关于小图的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arnold Mathematical Journal
Arnold Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.50
自引率
0.00%
发文量
28
期刊介绍: The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold''s best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final'' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis.  Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold''s principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author''s responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author''s understanding of the overall picture is presented; however, these parts must be clearly indicated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信