Index Sets for Classes of Positive Preorders

IF 0.4 3区 数学 Q4 LOGIC
B. S. Kalmurzayev, N. A. Bazhenov, M. A. Torebekova
{"title":"Index Sets for Classes of Positive Preorders","authors":"B. S. Kalmurzayev,&nbsp;N. A. Bazhenov,&nbsp;M. A. Torebekova","doi":"10.1007/s10469-022-09673-z","DOIUrl":null,"url":null,"abstract":"<div><div><p>We study the complexity of index sets with respect to a universal computable numbering of the family of all positive preorders. Let ≤<sub>c</sub> be computable reducibility on positive preorders. For an arbitrary positive preorder R such that the R-induced equivalence ∼R has infinitely many classes, the following results are obtained. The index set for preorders P with R ≤<sub>c</sub> P is <span>\\( {\\sum}_3^0-\\mathrm{complete} \\)</span>. A preorder R is said to be self-full if the range of any computable function realizing the reduction R ≤<sub>c</sub> R intersects all ∼Rclasses. If L is a non-self-full positive linear preorder, then the index set of preorders P with P ≡<sub>c</sub> L is <span>\\( {\\sum}_3^0-\\mathrm{complete} \\)</span>. It is proved that the index set of self-full linear preorders is <span>\\( {\\prod}_3^0-\\mathrm{complete} \\)</span>.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09673-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

Abstract

We study the complexity of index sets with respect to a universal computable numbering of the family of all positive preorders. Let ≤c be computable reducibility on positive preorders. For an arbitrary positive preorder R such that the R-induced equivalence ∼R has infinitely many classes, the following results are obtained. The index set for preorders P with R ≤c P is \( {\sum}_3^0-\mathrm{complete} \). A preorder R is said to be self-full if the range of any computable function realizing the reduction R ≤c R intersects all ∼Rclasses. If L is a non-self-full positive linear preorder, then the index set of preorders P with P ≡c L is \( {\sum}_3^0-\mathrm{complete} \). It is proved that the index set of self-full linear preorders is \( {\prod}_3^0-\mathrm{complete} \).

正预订单类的索引集
我们研究了关于所有正预序族的普遍可计算编号的索引集的复杂性。设≤c是正预序上的可计算可约性。对于任意正预序R,使得R诱导等价~R具有无限多个类,得到以下结果。R≤cP的预序P的索引集是\({\sum}_3^0-\mathrm{complete}\)。如果实现约简R≤cR的任何可计算函数的范围与所有~R类相交,则称预序R是自满的。如果L是一个非自完全正线性预序,则P≠cL的预序P的索引集是\({\sum}_3^0-\mathrm{complete}\)。证明了自满线性预序的索引集是\({\prod}_3^0-\mathrm{complete}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信