Surjective isometries on the Banach algebra of continuously differentiable maps with values in Lipschitz algebra

IF 0.5 Q3 MATHEMATICS
Daisuke Hirota
{"title":"Surjective isometries on the Banach algebra of continuously differentiable maps with values in Lipschitz algebra","authors":"Daisuke Hirota","doi":"10.1007/s44146-023-00066-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\text {Lip}}(I)\\)</span> be the Banach algebra of all Lipschitz functions on the closed unit interval <i>I</i> with the norm <span>\\(\\Vert f\\Vert _L=\\Vert f\\Vert _\\infty +L(f)\\)</span> for <span>\\(f\\in {\\text {Lip}}(I)\\)</span>, where <i>L</i>(<i>f</i>) is the Lipschitz constant of <i>f</i>. We denote by <span>\\(C^{1}(I, {\\text {Lip}}(I))\\)</span> the Banach algebra of all continuously differentiable functions <i>F</i> from <i>I</i> to <span>\\({\\text {Lip}}(I)\\)</span> equipped with the norm <span>\\(\\Vert F\\Vert _{\\Sigma }=\\sup _{s\\in I}\\Vert F(s)\\Vert _L+\\sup _{t\\in I}\\Vert D(F)(t)\\Vert _L\\)</span> for <span>\\(F\\in C^{1}(I, {\\text {Lip}}(I))\\)</span>. In this paper, we prove that if <i>T</i> is a surjective, not necessarily linear, isometry on <span>\\(C^{1}(I, {\\text {Lip}}(I))\\)</span>, then <span>\\(T-T(0)\\)</span> is a weighted composition operator or its complex conjugation. Among other things, any surjective complex linear isometry on <span>\\(C^{1}(I, {\\text {Lip}}(I))\\)</span> is of the following form: <span>\\(c_{1}F(\\tau _1(s),\\tau _2(x))\\)</span>, where <span>\\(c_{1}\\)</span> is a complex number of modulus 1, and <span>\\(\\tau _1\\)</span> and <span>\\(\\tau _2\\)</span> are isometries of <i>I</i> onto itself.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"227 - 256"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00066-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00066-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\text {Lip}}(I)\) be the Banach algebra of all Lipschitz functions on the closed unit interval I with the norm \(\Vert f\Vert _L=\Vert f\Vert _\infty +L(f)\) for \(f\in {\text {Lip}}(I)\), where L(f) is the Lipschitz constant of f. We denote by \(C^{1}(I, {\text {Lip}}(I))\) the Banach algebra of all continuously differentiable functions F from I to \({\text {Lip}}(I)\) equipped with the norm \(\Vert F\Vert _{\Sigma }=\sup _{s\in I}\Vert F(s)\Vert _L+\sup _{t\in I}\Vert D(F)(t)\Vert _L\) for \(F\in C^{1}(I, {\text {Lip}}(I))\). In this paper, we prove that if T is a surjective, not necessarily linear, isometry on \(C^{1}(I, {\text {Lip}}(I))\), then \(T-T(0)\) is a weighted composition operator or its complex conjugation. Among other things, any surjective complex linear isometry on \(C^{1}(I, {\text {Lip}}(I))\) is of the following form: \(c_{1}F(\tau _1(s),\tau _2(x))\), where \(c_{1}\) is a complex number of modulus 1, and \(\tau _1\) and \(\tau _2\) are isometries of I onto itself.

Lipschitz代数中具有值的连续可微映射的Banach代数上的满射等距
设\({\text{Lip}}(I)\)是闭单位区间I上所有Lipschitz函数的Banach代数,其范数为\。我们用\(C^{1}(I,{\text{Lip}}(Ⅰ))\)表示所有从I到\({\text{Lip}(I)\)的连续可微函数F的Banach代数,该Banach代数配备有\(\Vert F\Vert_{\ Sigma}=\sup_{s\in I}\Vert F(s)\Vert_L+\sup_ \)。在本文中,我们证明了如果T是\(C^{1}(I,{\text{Lip}}(I))\)上的满射(不一定是线性的)等距,那么\(T-T(0)\)是加权复合算子或其复共轭。除其他外,\(C^{1}(I,{\text{Lip}}(I))上的任何满射复线性等距都是以下形式:\(C_{1}F(\tau _1(s),\tau _2(x))\),其中\(c{1}\)是模1的复数,并且\(\tau _1\)和\(\tu _2\)是I在其自身上的等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信