Sarah Bürli, Jean-Paul Theurillat, Manuela Winkler, Andrea Lamprecht, Harald Pauli, Christian Rixen, Klaus Steinbauer, Sonja Wipf, Otar Abdaladze, Christopher Andrews, Peter Barančok, José Luis Benito-Alonso, Maria Rosa Fernández Calzado, Maria Laura Carranza, Jan Dick, Brigitta Erschbamer, Dany Ghosn, Khatuna Gigauri, George Kazakis, Martin Mallaun, Ottar Michelsen, Dmitry Moiseev, Pavel Moiseev, Ulf Molau, Joaquín Molero Mesa, Umberto Morra di Cella, Imran Nadeem, Laszlo Nagy, Lena Nicklas, Andrej Palaj, Bård Pedersen, Martina Petey, Mihai Puşcaş, Graziano Rossi, Angela Stanisci, Marcello Tomaselli, Peter Unterluggauer, Tudor-Mihai Ursu, Luis Villar, Pascal Vittoz
{"title":"A common soil temperature threshold for the upper limit of alpine grasslands in European mountains","authors":"Sarah Bürli, Jean-Paul Theurillat, Manuela Winkler, Andrea Lamprecht, Harald Pauli, Christian Rixen, Klaus Steinbauer, Sonja Wipf, Otar Abdaladze, Christopher Andrews, Peter Barančok, José Luis Benito-Alonso, Maria Rosa Fernández Calzado, Maria Laura Carranza, Jan Dick, Brigitta Erschbamer, Dany Ghosn, Khatuna Gigauri, George Kazakis, Martin Mallaun, Ottar Michelsen, Dmitry Moiseev, Pavel Moiseev, Ulf Molau, Joaquín Molero Mesa, Umberto Morra di Cella, Imran Nadeem, Laszlo Nagy, Lena Nicklas, Andrej Palaj, Bård Pedersen, Martina Petey, Mihai Puşcaş, Graziano Rossi, Angela Stanisci, Marcello Tomaselli, Peter Unterluggauer, Tudor-Mihai Ursu, Luis Villar, Pascal Vittoz","doi":"10.1007/s00035-021-00250-1","DOIUrl":null,"url":null,"abstract":"<div><p>While climatic research about treeline has a long history, the climatic conditions corresponding to the upper limit of closed alpine grasslands remain poorly understood. Here, we propose a climatic definition for this limit, the ‘grassline’, in analogy to the treeline, which is based on the growing season length and the soil temperature. Eighty-seven mountain summits across ten European mountain ranges, covering three biomes (boreal, temperate, Mediterranean), were inventoried as part of the GLORIA project. Vascular plant cover was estimated visually in 326 plots of 1 × 1 m. Soil temperatures were measured in situ for 2–7 years, from which the length of the growing season and mean temperature were derived. The climatic conditions corresponding to 40% plant cover were defined as the thresholds for alpine grassland. Closed vegetation was present in locations with a mean growing season soil temperature warmer than 4.9 °C, or a minimal growing season length of 85 days, with the growing season defined as encompassing days with daily mean ≥ 1 °C. Hence, the upper limit of closed grasslands was associated with a mean soil temperature close to that previously observed at the treeline, and in accordance with physiological thresholds to growth in vascular plants. In contrast to trees, whose canopy temperature is coupled with air temperature, small-stature alpine plants benefit from the soil warmed by solar radiation and consequently, they can grow at higher elevations. Since substrate stability is necessary for grasslands to occur at their climatic limit, the grassline rarely appears as a distinct linear feature.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":"131 1","pages":"41 - 52"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00250-1","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alpine Botany","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00035-021-00250-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 10
Abstract
While climatic research about treeline has a long history, the climatic conditions corresponding to the upper limit of closed alpine grasslands remain poorly understood. Here, we propose a climatic definition for this limit, the ‘grassline’, in analogy to the treeline, which is based on the growing season length and the soil temperature. Eighty-seven mountain summits across ten European mountain ranges, covering three biomes (boreal, temperate, Mediterranean), were inventoried as part of the GLORIA project. Vascular plant cover was estimated visually in 326 plots of 1 × 1 m. Soil temperatures were measured in situ for 2–7 years, from which the length of the growing season and mean temperature were derived. The climatic conditions corresponding to 40% plant cover were defined as the thresholds for alpine grassland. Closed vegetation was present in locations with a mean growing season soil temperature warmer than 4.9 °C, or a minimal growing season length of 85 days, with the growing season defined as encompassing days with daily mean ≥ 1 °C. Hence, the upper limit of closed grasslands was associated with a mean soil temperature close to that previously observed at the treeline, and in accordance with physiological thresholds to growth in vascular plants. In contrast to trees, whose canopy temperature is coupled with air temperature, small-stature alpine plants benefit from the soil warmed by solar radiation and consequently, they can grow at higher elevations. Since substrate stability is necessary for grasslands to occur at their climatic limit, the grassline rarely appears as a distinct linear feature.
期刊介绍:
Alpine Botany is an international journal providing a forum for plant science studies at high elevation with links to fungal and microbial ecology, including vegetation and flora of mountain regions worldwide.