Counter-Rotating Gaseous Disk and Star Formation in the S0 Galaxy NGC 934

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
O. K. Sil’chenko, A. V. Moiseev, D. V. Oparin, D. V. Zlydneva, D. V. Kozlova
{"title":"Counter-Rotating Gaseous Disk and Star Formation in the S0 Galaxy NGC 934","authors":"O. K. Sil’chenko,&nbsp;A. V. Moiseev,&nbsp;D. V. Oparin,&nbsp;D. V. Zlydneva,&nbsp;D. V. Kozlova","doi":"10.1134/S1063773723050043","DOIUrl":null,"url":null,"abstract":"<p>Using long-slit and panoramic spectroscopy at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and by mapping emission lines in a narrow passband of 13 Å with the MaNGaL instrument at the 2.5-m telescope of the Caucasus Mountain Observatory of the Sternberg Astronomical Institute of the Lomonosov Moscow State University, we have investigated the gaseous component of the giant lenticular galaxy NGC 934. The gas kinematics in the galaxy has turned out to disagree completely with the stellar kinematics, suggesting recent accretion of a large amount of cold gas by the galaxy. Weak star formation proceeds in the accreted gas on the periphery of the galaxy, mainly in a ring of radius 26 kpc, which may promise the buildup of a giant low-surface-brightness stellar disk in this early-type galaxy. The gas metallicity in the star formation ring is nearly solar: the accretion source is most likely the swallowing of a massive gas-rich satellite.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773723050043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using long-slit and panoramic spectroscopy at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and by mapping emission lines in a narrow passband of 13 Å with the MaNGaL instrument at the 2.5-m telescope of the Caucasus Mountain Observatory of the Sternberg Astronomical Institute of the Lomonosov Moscow State University, we have investigated the gaseous component of the giant lenticular galaxy NGC 934. The gas kinematics in the galaxy has turned out to disagree completely with the stellar kinematics, suggesting recent accretion of a large amount of cold gas by the galaxy. Weak star formation proceeds in the accreted gas on the periphery of the galaxy, mainly in a ring of radius 26 kpc, which may promise the buildup of a giant low-surface-brightness stellar disk in this early-type galaxy. The gas metallicity in the star formation ring is nearly solar: the accretion source is most likely the swallowing of a massive gas-rich satellite.

Abstract Image

反旋转气态盘与S0星系NGC 934的恒星形成
在俄罗斯科学院特殊天体物理天文台的6米望远镜上使用长缝和全景光谱,并在罗蒙诺索夫莫斯科国立大学斯滕贝格天文研究所高加索山天文台的2.5米望远镜上用MaNGaL仪器绘制13Å窄通带中的发射线,我们已经研究了巨大透镜星系NGC934的气体成分。星系中的气体运动学与恒星运动学完全不一致,这表明星系最近吸积了大量冷气体。弱恒星的形成是在星系外围的吸积气体中进行的,主要是在半径为26 kpc的环中,这可能预示着在这个早期类型的星系中会形成一个巨大的低表面亮度星盘。恒星形成环中的气体金属丰度几乎是太阳的:吸积源很可能是吞噬了一颗大质量富含气体的卫星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信