{"title":"The Minimal Sum of Squares Over Partitions with a Nonnegative Rank","authors":"Sela Fried","doi":"10.1007/s00026-022-00625-z","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of <i>n</i> with a nonnegative rank. Denoting the sequence of the minima by <span>\\((m_n)_{n\\in {\\mathbb {N}}}\\)</span>, we prove that <span>\\(m_n=\\Theta \\left( n^{4/3}\\right) \\)</span>. Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 4","pages":"781 - 797"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00625-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n with a nonnegative rank. Denoting the sequence of the minima by \((m_n)_{n\in {\mathbb {N}}}\), we prove that \(m_n=\Theta \left( n^{4/3}\right) \). Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches