{"title":"The Minimal Sum of Squares Over Partitions with a Nonnegative Rank","authors":"Sela Fried","doi":"10.1007/s00026-022-00625-z","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of <i>n</i> with a nonnegative rank. Denoting the sequence of the minima by <span>\\((m_n)_{n\\in {\\mathbb {N}}}\\)</span>, we prove that <span>\\(m_n=\\Theta \\left( n^{4/3}\\right) \\)</span>. Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00625-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n with a nonnegative rank. Denoting the sequence of the minima by \((m_n)_{n\in {\mathbb {N}}}\), we prove that \(m_n=\Theta \left( n^{4/3}\right) \). Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.