The Minimal Sum of Squares Over Partitions with a Nonnegative Rank

Pub Date : 2022-12-03 DOI:10.1007/s00026-022-00625-z
Sela Fried
{"title":"The Minimal Sum of Squares Over Partitions with a Nonnegative Rank","authors":"Sela Fried","doi":"10.1007/s00026-022-00625-z","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of <i>n</i> with a nonnegative rank. Denoting the sequence of the minima by <span>\\((m_n)_{n\\in {\\mathbb {N}}}\\)</span>, we prove that <span>\\(m_n=\\Theta \\left( n^{4/3}\\right) \\)</span>. Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00625-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a question of Defant and Propp (Electron J Combin 27:Article P3.51, 2020) regarding the connection between the degrees of noninvertibility of functions and those of their iterates, we address the combinatorial optimization problem of minimizing the sum of squares over partitions of n with a nonnegative rank. Denoting the sequence of the minima by \((m_n)_{n\in {\mathbb {N}}}\), we prove that \(m_n=\Theta \left( n^{4/3}\right) \). Consequently, we improve by a factor of 2 the lower bound provided by Defant and Propp for iterates of order two.

Abstract Image

分享
查看原文
非负秩分区上的最小平方和
受Defant和Propp(Electron J Combin 27:文章P3.51/2020)关于函数的不可逆度与其迭代函数的不可可逆度之间的联系的问题的启发,我们解决了在具有非负秩的n的分区上最小化平方和的组合优化问题。用\((m_n)_{n\in{\mathbb{n}})}\表示极小值的序列,我们证明了\(m_n=\Theta\left(n^{4/3}\right)\)。因此,我们将Defant和Propp为二阶迭代提供的下界提高了2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信