Core invertibility of operators from the algebra generated by two orthogonal projections

IF 0.5 Q3 MATHEMATICS
Albrecht Böttcher, Ilya M. Spitkovsky
{"title":"Core invertibility of operators from the algebra generated by two orthogonal projections","authors":"Albrecht Böttcher,&nbsp;Ilya M. Spitkovsky","doi":"10.1007/s44146-023-00059-w","DOIUrl":null,"url":null,"abstract":"<div><p>A Hilbert space operator <i>A</i> is said to be core invertible if it has an inner inverse whose range coincides with the range of <i>A</i> and whose null space coincides with the null space of the adjoint of <i>A</i>. This notion was introduced by Baksalary, Trenkler, Rakić, Dinčić, and Djordjević in the last decade, who also proved that core invertibility is equivalent to group invertibility and that the core and group inverses coincide if and only if <i>A</i> is a so-called <i>EP</i> operator. The present paper contains criteria for core invertibility and for the <i>EP</i> property as well as formulas for the core inverse for operators in the von Neumann algebra generated by two orthogonal projections.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"257 - 268"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00059-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00059-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Hilbert space operator A is said to be core invertible if it has an inner inverse whose range coincides with the range of A and whose null space coincides with the null space of the adjoint of A. This notion was introduced by Baksalary, Trenkler, Rakić, Dinčić, and Djordjević in the last decade, who also proved that core invertibility is equivalent to group invertibility and that the core and group inverses coincide if and only if A is a so-called EP operator. The present paper contains criteria for core invertibility and for the EP property as well as formulas for the core inverse for operators in the von Neumann algebra generated by two orthogonal projections.

两个正交投影生成的代数算子的核可逆性
如果Hilbert空间算子A有一个内逆,其范围与A的范围重合,其零空间与A的伴随的零空间重合,则称其为核可逆算子。这一概念是由Baksalay、Trenkler、Rakić、Dinčić和Djordjević在过去十年中引入的,他还证明了核心可逆性等价于群可逆性,并且当且仅当A是所谓的EP算子时,核心和群逆重合。本文给出了由两个正交投影生成的von Neumann代数中算子的核可逆性和EP性质的判据,以及核逆的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信