Reliability evaluation method of complex technical systems based on test results of disassembled components

Q3 Earth and Planetary Sciences
Alexey Amosov, Oleg Rozhdestvensky
{"title":"Reliability evaluation method of complex technical systems based on test results of disassembled components","authors":"Alexey Amosov,&nbsp;Oleg Rozhdestvensky","doi":"10.1007/s42401-023-00212-x","DOIUrl":null,"url":null,"abstract":"<div><p>Reliability is an applied scientific direction. Here, the methods of research of systems under conditions of occurrence and elimination of random events are used and developed: failures of components of these systems. Basic research methods and conclusions of reliability theory are of general nature and can be applied in any field of engineering. In this paper, a team of authors considered an urgent problem of modern production, which is an overestimated number of full-scale tests, which entails an increase in the cost of products. The aim of the work is to create a method for evaluating complex technical systems based on the results of testing its elements, in particular electrical circuits. The practical significance of the work is expressed in the application of the method in analytical calculations of the reliability of component parts based on test data in the design of new complex technical systems and complexes. Also, in the work, the types of system failures are briefly considered and classified, and a method for experimental assessment of system reliability is given. The most significant factors for the stage of statistical processing are considered and analyzed. The following is a review of the literature on the issue under study and several examples of the use of the method in practice, with confirmation of the accuracy of the result by practical testing. As a result of the work, it was obtained that if the estimates of the probabilities of failure-free operation of all elements of the system are the same, then the estimates of the probabilities of the states of systems with a failure of the same number of elements are also the same. As a conclusion, practical recommendations on the application of the method are presented, but also the experience of the authors in the operation of complex technical systems shows that the operational reliability is almost always lower than the level obtained from the calculation results. The inaccuracy is explained by the imperfection of the production technology and the low reliability of reference information.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"6 2","pages":"335 - 342"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-023-00212-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00212-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Reliability is an applied scientific direction. Here, the methods of research of systems under conditions of occurrence and elimination of random events are used and developed: failures of components of these systems. Basic research methods and conclusions of reliability theory are of general nature and can be applied in any field of engineering. In this paper, a team of authors considered an urgent problem of modern production, which is an overestimated number of full-scale tests, which entails an increase in the cost of products. The aim of the work is to create a method for evaluating complex technical systems based on the results of testing its elements, in particular electrical circuits. The practical significance of the work is expressed in the application of the method in analytical calculations of the reliability of component parts based on test data in the design of new complex technical systems and complexes. Also, in the work, the types of system failures are briefly considered and classified, and a method for experimental assessment of system reliability is given. The most significant factors for the stage of statistical processing are considered and analyzed. The following is a review of the literature on the issue under study and several examples of the use of the method in practice, with confirmation of the accuracy of the result by practical testing. As a result of the work, it was obtained that if the estimates of the probabilities of failure-free operation of all elements of the system are the same, then the estimates of the probabilities of the states of systems with a failure of the same number of elements are also the same. As a conclusion, practical recommendations on the application of the method are presented, but also the experience of the authors in the operation of complex technical systems shows that the operational reliability is almost always lower than the level obtained from the calculation results. The inaccuracy is explained by the imperfection of the production technology and the low reliability of reference information.

Abstract Image

基于拆卸部件试验结果的复杂技术系统可靠性评估方法
可靠性是一个应用科学方向。在这里,使用和发展了在随机事件发生和消除的条件下研究系统的方法:这些系统的组件故障。可靠性理论的基本研究方法和结论具有一般性,可以应用于任何工程领域。在这篇论文中,一组作者考虑了现代生产的一个紧迫问题,即高估了全尺寸测试的数量,这会增加产品成本。这项工作的目的是创造一种基于测试其元件,特别是电路的结果来评估复杂技术系统的方法。在新的复杂技术系统和综合体的设计中,该方法在基于测试数据的零部件可靠性分析计算中的应用表明了该工作的实际意义。此外,在工作中,对系统故障的类型进行了简要的考虑和分类,并给出了系统可靠性的实验评估方法。对统计处理阶段最重要的因素进行了考虑和分析。以下是关于所研究问题的文献综述,以及在实践中使用该方法的几个例子,并通过实际测试证实了结果的准确性。作为工作的结果,得到了如果系统的所有元件的无故障操作概率的估计是相同的,那么具有相同数量元件的故障的系统的状态概率的估计也是相同的。作为结论,对该方法的应用提出了实用建议,但作者在复杂技术系统运行中的经验表明,运行可靠性几乎总是低于计算结果的水平。这种不准确的原因是生产技术的不完善和参考信息的可靠性低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信