Peng Wang;Huaxia Lv;Xiaojing Zheng;Wenhui Ma;Weijin Wang
{"title":"Validity Analysis of Network Big Data","authors":"Peng Wang;Huaxia Lv;Xiaojing Zheng;Wenhui Ma;Weijin Wang","doi":"10.13052/jwe1540-9589.2234","DOIUrl":null,"url":null,"abstract":"False data in network big data has led to considerable ineffectiveness in perceiving the property of fact. Correct conclusions can be drawn only by accurately identifying and eliminating these false data. In other words, analysis is the premise to reaching a correct conclusion. This paper develops a big data network dissemination model based on the properties of the network. We also analyze the attributes of the big data random complex network based on the revised F-J model. Then, based on the scale-free nature of network big data, the evolution law of connected giant components and Bayesian inference, we propose an identification method of effective data in networks. Finally, after obtaining the real data, we analyze the dissemination and evolution characteristics of the network big data. The results show that if some online users intentionally spread false data on a large-scale website, the entire network data becomes false, despite a minimal probability of choosing these dissemination sources.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"22 3","pages":"465-496"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10243554/10243555/10247498.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10247498/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
False data in network big data has led to considerable ineffectiveness in perceiving the property of fact. Correct conclusions can be drawn only by accurately identifying and eliminating these false data. In other words, analysis is the premise to reaching a correct conclusion. This paper develops a big data network dissemination model based on the properties of the network. We also analyze the attributes of the big data random complex network based on the revised F-J model. Then, based on the scale-free nature of network big data, the evolution law of connected giant components and Bayesian inference, we propose an identification method of effective data in networks. Finally, after obtaining the real data, we analyze the dissemination and evolution characteristics of the network big data. The results show that if some online users intentionally spread false data on a large-scale website, the entire network data becomes false, despite a minimal probability of choosing these dissemination sources.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.