Long-time solutions of scalar hyperbolic reaction equations incorporating relaxation and the Arrhenius combustion nonlinearity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J A Leach;Andrew P Bassom
{"title":"Long-time solutions of scalar hyperbolic reaction equations incorporating relaxation and the Arrhenius combustion nonlinearity","authors":"J A Leach;Andrew P Bassom","doi":"10.1093/imamat/hxab047","DOIUrl":null,"url":null,"abstract":"We consider an initial-value problem based on a class of scalar nonlinear hyperbolic reaction–diffusion equations of the general form \n<tex>$$\\begin{align*} &amp; u_{\\tau\\tau}+u_{\\tau}=u_{{xx}}+\\varepsilon (F(u)+F(u)_{\\tau} ), \\end{align*}$$</tex>\n in which \n<tex>${x}$</tex>\n and \n<tex>$\\tau $</tex>\n represent dimensionless distance and time, respectively, and \n<tex>$\\varepsilon&gt;0$</tex>\n is a parameter related to the relaxation time. Furthermore, the reaction function, \n<tex>$F(u)$</tex>\n, is given by the Arrhenius combustion nonlinearity, \n<tex>$$\\begin{align*} &amp; F(u)=e^{-{E}/{u}}(1-u), \\end{align*}$$</tex>\n in which \n<tex>$E&gt;0$</tex>\n is a parameter related to the activation energy. The initial data are given by a simple step function with \n<tex>$u({x},0)=1$</tex>\n for \n<tex>${x} \\le 0$</tex>\n and \n<tex>$u({x},0)=0$</tex>\n for \n<tex>${x}&gt; 0$</tex>\n. The above initial-value problem models, under certain simplifying assumptions, combustion waves in premixed gaseous fuels; here, the variable \n<tex>$u$</tex>\n represents the non-dimensional temperature. It is established that the large-time structure of the solution to the initial-value problem involves the evolution of a propagating wave front, which is of reaction–diffusion or reaction–relaxation type depending on the values of the problem parameters \n<tex>$E$</tex>\n and \n<tex>$\\varepsilon $</tex>\n.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717012/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an initial-value problem based on a class of scalar nonlinear hyperbolic reaction–diffusion equations of the general form $$\begin{align*} & u_{\tau\tau}+u_{\tau}=u_{{xx}}+\varepsilon (F(u)+F(u)_{\tau} ), \end{align*}$$ in which ${x}$ and $\tau $ represent dimensionless distance and time, respectively, and $\varepsilon>0$ is a parameter related to the relaxation time. Furthermore, the reaction function, $F(u)$ , is given by the Arrhenius combustion nonlinearity, $$\begin{align*} & F(u)=e^{-{E}/{u}}(1-u), \end{align*}$$ in which $E>0$ is a parameter related to the activation energy. The initial data are given by a simple step function with $u({x},0)=1$ for ${x} \le 0$ and $u({x},0)=0$ for ${x}> 0$ . The above initial-value problem models, under certain simplifying assumptions, combustion waves in premixed gaseous fuels; here, the variable $u$ represents the non-dimensional temperature. It is established that the large-time structure of the solution to the initial-value problem involves the evolution of a propagating wave front, which is of reaction–diffusion or reaction–relaxation type depending on the values of the problem parameters $E$ and $\varepsilon $ .
包含松弛和阿伦尼斯燃烧非线性的标量双曲型反应方程的长时间解
我们考虑了一个基于一类标量非线性双曲型反应-扩散方程的初值问题,该方程的一般形式为$$\beargin{align*}&;u_{\tau\tau}+u_{_tau}=u_{xx}}+\varepsilon(F(u)+F(u;0$是一个与松弛时间相关的参数。此外,反应函数$F(u)$由Arrhenius燃烧非线性$$\beagin{align*}&;F(u)=e^{-{e}/{u}}(1-u),\end{align*}$$其中$e>;0$是一个与激活能有关的参数。初始数据由一个简单的阶跃函数给出,对于${x}\le 0$,$u({x},0)=1$,对于${x}>;0美元。上述初值问题模型,在一定的简化假设下,预混气体燃料中的燃烧波;这里,变量$u$表示无量纲温度。根据问题参数$E$和$\varepsilon$的值,确定了初值问题解的大时间结构涉及传播波前的演化,其为反应-扩散或反应-弛豫类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信