{"title":"Laplace–Beltrami spectrum of ellipsoids that are close to spheres and analytic perturbation theory","authors":"Suresh Eswarathasan;Theodore Kolokolnikov","doi":"10.1093/imamat/hxab045","DOIUrl":null,"url":null,"abstract":"We study the spectrum of the Laplace–Beltrami operator on ellipsoids. For ellipsoids that are close to the sphere, we use analytic perturbation theory to estimate the eigenvalues up to two orders. We show that for biaxial ellipsoids sufficiently close to the sphere, the first \n<tex>$L^2$</tex>\n eigenvalues have multiplicity at most two, and characterize those that are simple. For the triaxial ellipsoids sufficiently close to the sphere that are not biaxial, we show that at least the first 16 eigenvalues are all simple. We also give the results of various numerical experiments, including comparisons to our results from the analytic perturbation theory, and approximations for the eigenvalues of ellipsoids that degenerate into infinite cylinders or two-dimensional disks. We propose a conjecture on the exact number of nodal domains of near-sphere ellipsoids.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717009/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
We study the spectrum of the Laplace–Beltrami operator on ellipsoids. For ellipsoids that are close to the sphere, we use analytic perturbation theory to estimate the eigenvalues up to two orders. We show that for biaxial ellipsoids sufficiently close to the sphere, the first
$L^2$
eigenvalues have multiplicity at most two, and characterize those that are simple. For the triaxial ellipsoids sufficiently close to the sphere that are not biaxial, we show that at least the first 16 eigenvalues are all simple. We also give the results of various numerical experiments, including comparisons to our results from the analytic perturbation theory, and approximations for the eigenvalues of ellipsoids that degenerate into infinite cylinders or two-dimensional disks. We propose a conjecture on the exact number of nodal domains of near-sphere ellipsoids.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.