{"title":"Simulation of dense gas-particle flow using a USM-θ model, combined with a frictional stress model","authors":"Lixing Zhou, Yang Liu","doi":"10.1007/s40571-023-00554-5","DOIUrl":null,"url":null,"abstract":"<div><p>A unified second-order-moment (USM) two-phase turbulence model together with a kinetic theory of inter-particle collision (USM-θ), and combined with a frictional stress model, was used to simulate dense gas-particle flows in a downer reactor. The interaction between gas and particle turbulence is simulated by a transport equation of two-phase velocity correlation. The simulation results are in good agreement with experimental data reported by Wang et al. The typical dense ring of particles in the near-wall region was observed. It is found that the frictional stress affects the particle fluctuation energy dissipation, leading to the decrease of the particle pseudo-temperature. Because particles are not dense enough in the center region, the effect of inter-particle collision on particle fluctuation velocity, gas-particle velocity correlation, particle collision frequency, particle shear viscosity and particle effective thermal conductivity are not obvious.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1171 - 1180"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00554-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A unified second-order-moment (USM) two-phase turbulence model together with a kinetic theory of inter-particle collision (USM-θ), and combined with a frictional stress model, was used to simulate dense gas-particle flows in a downer reactor. The interaction between gas and particle turbulence is simulated by a transport equation of two-phase velocity correlation. The simulation results are in good agreement with experimental data reported by Wang et al. The typical dense ring of particles in the near-wall region was observed. It is found that the frictional stress affects the particle fluctuation energy dissipation, leading to the decrease of the particle pseudo-temperature. Because particles are not dense enough in the center region, the effect of inter-particle collision on particle fluctuation velocity, gas-particle velocity correlation, particle collision frequency, particle shear viscosity and particle effective thermal conductivity are not obvious.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.