An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes

Anthony Gómez-Fonseca;Roxana Smarandache;David G. M. Mitchell
{"title":"An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes","authors":"Anthony Gómez-Fonseca;Roxana Smarandache;David G. M. Mitchell","doi":"10.1109/JSAIT.2023.3315585","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient strategy to enumerate the number of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n-cycles, \n<inline-formula> <tex-math>$g\\leq k &lt; 2g$ </tex-math></inline-formula>\n, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth \n<inline-formula> <tex-math>$g$ </tex-math></inline-formula>\n using its polynomial parity-check matrix \n<inline-formula> <tex-math>$H$ </tex-math></inline-formula>\n. This strategy works for both \n<inline-formula> <tex-math>$(d_{v},d_{c})$ </tex-math></inline-formula>\n-regular and irregular QC-LDPC codes. In this approach, we note that the \n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\nth power of the polynomial adjacency matrix can be used to describe walks of length \n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\n in the protograph and can therefore be sufficiently described by the matrices \n<inline-formula> <tex-math>$B_{m}(H) \\triangleq (HH^{\\mathsf {T}})^{\\lfloor {m/2}\\rfloor }H^{(m\\mod 2)}$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$m\\geq 0$ </tex-math></inline-formula>\n. We provide formulas for the number of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n-cycles, \n<inline-formula> <tex-math>$\\mathcal {N}_{k}$ </tex-math></inline-formula>\n, by just taking into account repetitions in some multisets constructed from the matrices \n<inline-formula> <tex-math>$B_{m}(H)$ </tex-math></inline-formula>\n. This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the \n<inline-formula> <tex-math>$3\\times n_{v}$ </tex-math></inline-formula>\n fully-connected protograph, the complexity of determining \n<inline-formula> <tex-math>$\\mathcal {N}_{k}$ </tex-math></inline-formula>\n, for \n<inline-formula> <tex-math>$k=4,6,8,10$ </tex-math></inline-formula>\n and 12, is \n<inline-formula> <tex-math>$O(n_{v}^{2}\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{2}\\log (n_{v})\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{4}\\log ^{4}(n_{v})\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{4}\\log (n_{v})\\log (N))$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$O(n_{v}^{6}\\log ^{6}(n_{v})\\log (N))$ </tex-math></inline-formula>\n, respectively. The complexity, depending logarithmically on the lifting factor \n<inline-formula> <tex-math>$N$ </tex-math></inline-formula>\n, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"499-513"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10251427/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an efficient strategy to enumerate the number of $k$ -cycles, $g\leq k < 2g$ , in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth $g$ using its polynomial parity-check matrix $H$ . This strategy works for both $(d_{v},d_{c})$ -regular and irregular QC-LDPC codes. In this approach, we note that the $m$ th power of the polynomial adjacency matrix can be used to describe walks of length $m$ in the protograph and can therefore be sufficiently described by the matrices $B_{m}(H) \triangleq (HH^{\mathsf {T}})^{\lfloor {m/2}\rfloor }H^{(m\mod 2)}$ , where $m\geq 0$ . We provide formulas for the number of $k$ -cycles, $\mathcal {N}_{k}$ , by just taking into account repetitions in some multisets constructed from the matrices $B_{m}(H)$ . This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the $3\times n_{v}$ fully-connected protograph, the complexity of determining $\mathcal {N}_{k}$ , for $k=4,6,8,10$ and 12, is $O(n_{v}^{2}\log (N))$ , $O(n_{v}^{2}\log (n_{v})\log (N))$ , $O(n_{v}^{4}\log ^{4}(n_{v})\log (N))$ , $O(n_{v}^{4}\log (n_{v})\log (N))$ and $O(n_{v}^{6}\log ^{6}(n_{v})\log (N))$ , respectively. The complexity, depending logarithmically on the lifting factor $N$ , gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.
准循环LDPC码Tanner图中一种有效的循环计数策略
在本文中,我们提出了一种有效的策略来枚举$k$-循环的数量,$g\leqk<;在周长为$g$的准循环低密度奇偶校验(QC-LDPC)码的Tanner图中。该策略适用于$(d_{v},d_{c})$正则和非正则QC-LDPC码。在这种方法中,我们注意到多项式邻接矩阵的$m$次方可以用来描述原图中长度为$m$的走,因此可以用矩阵$B_{m}(H)\tatragleq(HH^{\mathsf{T}})^{\lfloor{m/2}\rfloor}H^{(m\mod 2)}$来充分描述,其中$m\geq 0$。我们提供了$k$-循环数的公式,$\mathcal{N}_{k} 通过仅考虑由矩阵$B_{m}(H)$构造的一些多集中的重复。这种方法被证明具有较低的复杂性。例如,在基于$3\times_{v}$全连通原图的QC-LDPC码的情况下,确定$\mathcal{N}_{k} 对于$k=4,6,8,10$和12,$是$O(n_{v}^{2}\log(n))$、$O(n-{v}^}2}\log(n_{v}})\log(n))$。复杂性对数依赖于提升因子$N$,据我们所知,与以前关于QC-LDPC码的周期分布的工作相比,我们的方法具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信