Finite Sample Analysis of Minmax Variant of Offline Reinforcement Learning for General MDPs

Jayanth Reddy Regatti;Abhishek Gupta
{"title":"Finite Sample Analysis of Minmax Variant of Offline Reinforcement Learning for General MDPs","authors":"Jayanth Reddy Regatti;Abhishek Gupta","doi":"10.1109/OJCSYS.2022.3198660","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the finite sample complexity bounds for offline reinforcement learning with general state, general function space and state-dependent action sets. The algorithm analyzed does not require the knowledge of the data-collection policy as compared to earlier works. We show that one can compute an \n<inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>\n-optimal Q function (state-action value function) using \n<inline-formula><tex-math>$O(1/\\epsilon ^{4})$</tex-math></inline-formula>\n i.i.d. samples of state-action-reward-next state tuples.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"152-163"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09857559.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9857559/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we analyze the finite sample complexity bounds for offline reinforcement learning with general state, general function space and state-dependent action sets. The algorithm analyzed does not require the knowledge of the data-collection policy as compared to earlier works. We show that one can compute an $\epsilon$ -optimal Q function (state-action value function) using $O(1/\epsilon ^{4})$ i.i.d. samples of state-action-reward-next state tuples.
一般MDP离线强化学习Minmax变量的有限样本分析
在这项工作中,我们分析了具有一般状态、一般函数空间和状态相关动作集的离线强化学习的有限样本复杂度边界。与早期的工作相比,所分析的算法不需要数据收集策略的知识。我们证明了可以使用状态动作奖励下一个状态元组的$O(1/\epsilon^{4})$i.i.d.样本来计算$\epsilon$最优Q函数(状态动作值函数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信