Crowd Simulation Incorporating Thermal Environments and Responsive Behaviors

Presence Pub Date : 2018-08-01 DOI:10.1162/PRES_a_00308
L. Chen;C. R. Jung;S. R. Musse;M. Moneimne;C. Wang;R. Fruchter;V. Bazjanac;G. Chen;N. I. Badler
{"title":"Crowd Simulation Incorporating Thermal Environments and Responsive Behaviors","authors":"L. Chen;C. R. Jung;S. R. Musse;M. Moneimne;C. Wang;R. Fruchter;V. Bazjanac;G. Chen;N. I. Badler","doi":"10.1162/PRES_a_00308","DOIUrl":null,"url":null,"abstract":"<para>Crowd simulation addresses algorithmic approaches to steering, navigation, perception, and behavioral models. Significant progress has been achieved in modeling interactions between agents and the environment to avoid collisions, exploit empirical local decision data, and plan efficient paths to goals. We address a relatively unexplored dimension of virtual human behavior: thermal perception, comfort, and appropriate behavioral responses. Thermal comfort is associated with the ambient environment, agent density factors, and interpersonal thermal feedback. A key feature of our approach is the temporal integration of both thermal exposure and occupant density to directly influence agent movements and behaviors (e.g., clothing changes) to increase thermal comfort. Empirical thermal comfort models are incorporated as a validation basis. Simple heat transfer models are used to model environment, agent, and interpersonal heat exchange. Our model’s generality makes it applicable to any existing crowd steering algorithm as it adds additional integrative terms to any cost function. Examples illustrate distinctive emergent behaviors such as balancing agent density with thermal comfort, hysteresis in responding to localized or brief thermal events, and discomfort and likely injury produced by extreme packing densities.</para>","PeriodicalId":101038,"journal":{"name":"Presence","volume":"26 4","pages":"436-452"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1162/PRES_a_00308","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8637200/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Crowd simulation addresses algorithmic approaches to steering, navigation, perception, and behavioral models. Significant progress has been achieved in modeling interactions between agents and the environment to avoid collisions, exploit empirical local decision data, and plan efficient paths to goals. We address a relatively unexplored dimension of virtual human behavior: thermal perception, comfort, and appropriate behavioral responses. Thermal comfort is associated with the ambient environment, agent density factors, and interpersonal thermal feedback. A key feature of our approach is the temporal integration of both thermal exposure and occupant density to directly influence agent movements and behaviors (e.g., clothing changes) to increase thermal comfort. Empirical thermal comfort models are incorporated as a validation basis. Simple heat transfer models are used to model environment, agent, and interpersonal heat exchange. Our model’s generality makes it applicable to any existing crowd steering algorithm as it adds additional integrative terms to any cost function. Examples illustrate distinctive emergent behaviors such as balancing agent density with thermal comfort, hysteresis in responding to localized or brief thermal events, and discomfort and likely injury produced by extreme packing densities.
结合热环境和响应行为的人群模拟
群组模拟解决了转向、导航、感知和行为模型的算法方法。在建模代理和环境之间的交互以避免冲突、利用经验局部决策数据和规划实现目标的有效路径方面,已经取得了重大进展。我们讨论了虚拟人行为的一个相对未探索的维度:热感知、舒适度和适当的行为反应。热舒适性与周围环境、药剂密度因素和人际热反馈有关。我们方法的一个关键特征是热暴露和占用者密度的时间积分,以直接影响主体的运动和行为(例如,衣服的变化),从而增加热舒适性。将经验热舒适模型作为验证基础。简单的传热模型用于模拟环境、主体和人际热交换。我们的模型的通用性使其适用于任何现有的人群导向算法,因为它为任何成本函数添加了额外的综合项。示例说明了独特的突发行为,如平衡剂密度与热舒适性、对局部或短暂热事件的反应滞后,以及极端堆积密度产生的不适和可能的伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信