Optimal orthogonal group synchronization and rotation group synchronization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Gao;Anderson Y Zhang
{"title":"Optimal orthogonal group synchronization and rotation group synchronization","authors":"Chao Gao;Anderson Y Zhang","doi":"10.1093/imaiai/iaac022","DOIUrl":null,"url":null,"abstract":"We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is \n<tex>$Y_{ij} = Z_i^* Z_j^{*T} + \\sigma W_{ij}\\in{\\mathbb{R}}^{d\\times d}$</tex>\n where \n<tex>$W_{ij}$</tex>\n is a Gaussian random matrix and \n<tex>$Z_i^*$</tex>\n is either an orthogonal matrix or a rotation matrix, and each \n<tex>$Y_{ij}$</tex>\n is observed independently with probability \n<tex>$p$</tex>\n. We analyze an iterative polar decomposition algorithm for the estimation of \n<tex>$Z^*$</tex>\n and show it has an error of \n<tex>$(1+o(1))\\frac{\\sigma ^2 d(d-1)}{2np}$</tex>\n when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10058607/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is $Y_{ij} = Z_i^* Z_j^{*T} + \sigma W_{ij}\in{\mathbb{R}}^{d\times d}$ where $W_{ij}$ is a Gaussian random matrix and $Z_i^*$ is either an orthogonal matrix or a rotation matrix, and each $Y_{ij}$ is observed independently with probability $p$ . We analyze an iterative polar decomposition algorithm for the estimation of $Z^*$ and show it has an error of $(1+o(1))\frac{\sigma ^2 d(d-1)}{2np}$ when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk.
最优正交群同步和旋转群同步
研究了正交群同步和旋转群同步的统计估计问题。该模型为$Y_{ij}=Z_i^*Z_j^{*T}+\mathbb{R}}^{d \ times d}$中的σW_{ij}$,其中$W_{ij}$是高斯随机矩阵,$Z_i^**$是正交矩阵或旋转矩阵,并且每个$Y_。我们分析了一种用于$Z^*$估计的迭代极分解算法,并表明当用谱方法初始化时,它的误差为$(1+o(1))\frac{\sigma^2 d(d-1)}{2np}$。进一步建立了匹配的极小极大下界,该下界导致所提出的算法的最优性,因为它实现了精确的极小极大风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信