Optimal orthogonal group synchronization and rotation group synchronization

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Chao Gao;Anderson Y Zhang
{"title":"Optimal orthogonal group synchronization and rotation group synchronization","authors":"Chao Gao;Anderson Y Zhang","doi":"10.1093/imaiai/iaac022","DOIUrl":null,"url":null,"abstract":"We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is \n<tex>$Y_{ij} = Z_i^* Z_j^{*T} + \\sigma W_{ij}\\in{\\mathbb{R}}^{d\\times d}$</tex>\n where \n<tex>$W_{ij}$</tex>\n is a Gaussian random matrix and \n<tex>$Z_i^*$</tex>\n is either an orthogonal matrix or a rotation matrix, and each \n<tex>$Y_{ij}$</tex>\n is observed independently with probability \n<tex>$p$</tex>\n. We analyze an iterative polar decomposition algorithm for the estimation of \n<tex>$Z^*$</tex>\n and show it has an error of \n<tex>$(1+o(1))\\frac{\\sigma ^2 d(d-1)}{2np}$</tex>\n when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"12 2","pages":"591-632"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10058607/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is $Y_{ij} = Z_i^* Z_j^{*T} + \sigma W_{ij}\in{\mathbb{R}}^{d\times d}$ where $W_{ij}$ is a Gaussian random matrix and $Z_i^*$ is either an orthogonal matrix or a rotation matrix, and each $Y_{ij}$ is observed independently with probability $p$ . We analyze an iterative polar decomposition algorithm for the estimation of $Z^*$ and show it has an error of $(1+o(1))\frac{\sigma ^2 d(d-1)}{2np}$ when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk.
最优正交群同步和旋转群同步
研究了正交群同步和旋转群同步的统计估计问题。该模型为$Y_{ij}=Z_i^*Z_j^{*T}+\mathbb{R}}^{d \ times d}$中的σW_{ij}$,其中$W_{ij}$是高斯随机矩阵,$Z_i^**$是正交矩阵或旋转矩阵,并且每个$Y_。我们分析了一种用于$Z^*$估计的迭代极分解算法,并表明当用谱方法初始化时,它的误差为$(1+o(1))\frac{\sigma^2 d(d-1)}{2np}$。进一步建立了匹配的极小极大下界,该下界导致所提出的算法的最优性,因为它实现了精确的极小极大风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信