Super-resolution of near-colliding point sources

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dmitry Batenkov;Gil Goldman;Yosef Yomdin
{"title":"Super-resolution of near-colliding point sources","authors":"Dmitry Batenkov;Gil Goldman;Yosef Yomdin","doi":"10.1093/imaiai/iaaa005","DOIUrl":null,"url":null,"abstract":"We consider the problem of stable recovery of sparse signals of the form \n<tex>$$\\begin{equation*}F(x)=\\sum_{j=1}^d a_j\\delta(x-x_j),\\quad x_j\\in\\mathbb{R},\\;a_j\\in\\mathbb{C}, \\end{equation*}$$</tex>\n from their spectral measurements, known in a bandwidth \n<tex>$\\varOmega $</tex>\n with absolute error not exceeding \n<tex>$\\epsilon&gt;0$</tex>\n. We consider the case when at most \n<tex>$p\\leqslant d$</tex>\n nodes \n<tex>$\\{x_j\\}$</tex>\n of \n<tex>$F$</tex>\n form a cluster whose extent is smaller than the Rayleigh limit \n<tex>${1\\over \\varOmega }$</tex>\n, while the rest of the nodes is well separated. Provided that \n<tex>$\\epsilon \\lessapprox \\operatorname{SRF}^{-2p+1}$</tex>\n, where \n<tex>$\\operatorname{SRF}=(\\varOmega \\varDelta )^{-1}$</tex>\n and \n<tex>$\\varDelta $</tex>\n is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order \n<tex>${1\\over \\varOmega }\\operatorname{SRF}^{2p-1}\\epsilon $</tex>\n, while for recovering the corresponding amplitudes \n<tex>$\\{a_j\\}$</tex>\n the rate is of the order \n<tex>$\\operatorname{SRF}^{2p-1}\\epsilon $</tex>\n. Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are \n<tex>${\\epsilon \\over \\varOmega }$</tex>\n and \n<tex>$\\epsilon $</tex>\n, respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known matrix pencil method achieves the above accuracy bounds.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa005","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514690/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 48

Abstract

We consider the problem of stable recovery of sparse signals of the form $$\begin{equation*}F(x)=\sum_{j=1}^d a_j\delta(x-x_j),\quad x_j\in\mathbb{R},\;a_j\in\mathbb{C}, \end{equation*}$$ from their spectral measurements, known in a bandwidth $\varOmega $ with absolute error not exceeding $\epsilon>0$ . We consider the case when at most $p\leqslant d$ nodes $\{x_j\}$ of $F$ form a cluster whose extent is smaller than the Rayleigh limit ${1\over \varOmega }$ , while the rest of the nodes is well separated. Provided that $\epsilon \lessapprox \operatorname{SRF}^{-2p+1}$ , where $\operatorname{SRF}=(\varOmega \varDelta )^{-1}$ and $\varDelta $ is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order ${1\over \varOmega }\operatorname{SRF}^{2p-1}\epsilon $ , while for recovering the corresponding amplitudes $\{a_j\}$ the rate is of the order $\operatorname{SRF}^{2p-1}\epsilon $ . Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are ${\epsilon \over \varOmega }$ and $\epsilon $ , respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known matrix pencil method achieves the above accuracy bounds.
近碰撞点源的超分辨率
我们考虑形式为$$\beart{方程*}F(x)=\sum_{j=1}^d a_j\delta(x-x_j),quad x_j\in\mathbb{R},\的稀疏信号的稳定恢复问题;a_j\in\mathbb{C},\end{方程*}$$来自它们的光谱测量,在带宽$\varOmega$中已知,绝对误差不超过$\epsilon>;0美元。我们考虑这样的情况,即$F$的最多$p\leqslant d$节点$\{x_j\}$形成一个范围小于瑞利极限${1\over\varOmega}$的簇,而其余节点则很好地分离。假设$\epsilon\lessapprox\operatorname{SRF}^{-2p+1}$,其中$\operatorname{SRF}=(\varOmega\varDelta)^{-1}$和$\varDelta$是节点之间的最小间隔,我们证明了簇节点重构的最小最大错误率为${1\over\varOmega}\operatorname{SRF}^{2p-1}\epsilon$,而对于恢复相应的振幅$\{a_j\}$,速率为$\运算符名称{SRF}^{2p-1}\ε$的阶。此外,非聚类节点和振幅的恢复的相应的最小-最大速率分别为${\epsilon\over\varOmega}$和$\epsilon$。这些结果表明,在比以前想象的更普遍的情况下,稳定的超分辨率是可能的。我们的数值实验表明,众所周知的矩阵笔方法达到了上述精度界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信