Noninvasive Breathing Effort Estimation of Mechanically Ventilated Patients Using Sparse Optimization

Joey Reinders;Bram Hunnekens;Nathan van de Wouw;Tom Oomen
{"title":"Noninvasive Breathing Effort Estimation of Mechanically Ventilated Patients Using Sparse Optimization","authors":"Joey Reinders;Bram Hunnekens;Nathan van de Wouw;Tom Oomen","doi":"10.1109/OJCSYS.2022.3180002","DOIUrl":null,"url":null,"abstract":"Mechanical ventilators facilitate breathing for patients who cannot breathe (sufficiently) on their own. The aim of this paper is to estimate relevant lung parameters and the spontaneous breathing effort of a ventilated patient that help keeping track of the patient’s clinical condition. A key challenge is that estimation using the available sensors for typical model structures results in a non-identifiable parametrization. A sparse optimization algorithm to estimate the lung parameters and the patient effort, without interfering with the patient’s treatment, using an \n<inline-formula><tex-math>$\\ell _{1}$</tex-math></inline-formula>\n-regularization approach is presented. It is confirmed that accurate estimates of the lung parameters and the patient effort can be retrieved through a simulation case study and an experimental case study.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"57-68"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09787788.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9787788/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mechanical ventilators facilitate breathing for patients who cannot breathe (sufficiently) on their own. The aim of this paper is to estimate relevant lung parameters and the spontaneous breathing effort of a ventilated patient that help keeping track of the patient’s clinical condition. A key challenge is that estimation using the available sensors for typical model structures results in a non-identifiable parametrization. A sparse optimization algorithm to estimate the lung parameters and the patient effort, without interfering with the patient’s treatment, using an $\ell _{1}$ -regularization approach is presented. It is confirmed that accurate estimates of the lung parameters and the patient effort can be retrieved through a simulation case study and an experimental case study.
稀疏优化法估计机械通气患者的无创呼吸力
机械通气机有助于无法自主(充分)呼吸的患者的呼吸。本文的目的是估计相关的肺部参数和通气患者的自主呼吸力,以帮助跟踪患者的临床状况。一个关键的挑战是,使用典型模型结构的可用传感器进行估计会导致不可识别的参数化。提出了一种稀疏优化算法,在不干扰患者治疗的情况下,使用$\ell_{1}$正则化方法来估计肺部参数和患者工作量。已经证实,可以通过模拟案例研究和实验案例研究来检索对肺部参数和患者努力的准确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信