Non-Stationary Representation Learning in Sequential Linear Bandits

Yuzhen Qin;Tommaso Menara;Samet Oymak;ShiNung Ching;Fabio Pasqualetti
{"title":"Non-Stationary Representation Learning in Sequential Linear Bandits","authors":"Yuzhen Qin;Tommaso Menara;Samet Oymak;ShiNung Ching;Fabio Pasqualetti","doi":"10.1109/OJCSYS.2022.3178540","DOIUrl":null,"url":null,"abstract":"In this paper, we study representation learning for multi-task decision-making in non-stationary environments. We consider the framework of sequential linear bandits, where the agent performs a series of tasks drawn from different environments. The embeddings of tasks in each environment share a low-dimensional feature extractor called \n<italic>representation</i>\n, and representations are different across environments. We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-stationary representations in an adaptive fashion. We prove that our algorithm significantly outperforms the existing ones that treat tasks independently. We also conduct experiments using both synthetic and real data to validate our theoretical insights and demonstrate the efficacy of our algorithm.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"41-56"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09783063.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9783063/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we study representation learning for multi-task decision-making in non-stationary environments. We consider the framework of sequential linear bandits, where the agent performs a series of tasks drawn from different environments. The embeddings of tasks in each environment share a low-dimensional feature extractor called representation , and representations are different across environments. We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-stationary representations in an adaptive fashion. We prove that our algorithm significantly outperforms the existing ones that treat tasks independently. We also conduct experiments using both synthetic and real data to validate our theoretical insights and demonstrate the efficacy of our algorithm.
序列线性带中的非平稳表示学习
在本文中,我们研究了非平稳环境中多任务决策的表示学习。我们考虑序列线性土匪的框架,其中代理执行从不同环境中提取的一系列任务。每个环境中的任务嵌入共享一个称为表示的低维特征提取器,并且表示在不同环境中是不同的。我们提出了一种在线算法,通过以自适应方式学习和转移非平稳表示来促进高效决策。我们证明了我们的算法显著优于现有的独立处理任务的算法。我们还使用合成数据和真实数据进行了实验,以验证我们的理论见解,并证明我们算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信