Ulam–Hyers stability of some linear differential equations of second order

Idriss Ellahiani, Belaid Bouikhalene
{"title":"Ulam–Hyers stability of some linear differential equations of second order","authors":"Idriss Ellahiani,&nbsp;Belaid Bouikhalene","doi":"10.1016/j.exco.2023.100110","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we prove the Ulam–Hyers stability of the following equation <span><span><span><math><mrow><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>γ</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>γ</mi></math></span> is a real number. The main purpose is to find a solution <span><math><mi>ϕ</mi></math></span> of (E) satisfying <span><math><mrow><mrow><mo>|</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>⩽</mo><mi>K</mi><mi>ɛ</mi></mrow></math></span>, where <span><math><mi>K</mi></math></span> is Ulam–Hyers-Stability constant and <span><math><mi>f</mi></math></span> is an exact solution of the associated inequality <span><span><span><math><mrow><mrow><mo>|</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>γ</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>⩽</mo><mi>ɛ</mi><mo>,</mo></mrow></math></span></span></span>for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we prove the Ulam–Hyers stability of the following equation (E)ϕ(x)+(γ1)ϕ(x)γϕ(x)=0,where γ is a real number. The main purpose is to find a solution ϕ of (E) satisfying |ϕ(x)f(x)|Kɛ, where K is Ulam–Hyers-Stability constant and f is an exact solution of the associated inequality |f(x)+(γ1)f(x)γf(x)|ɛ,for any ɛ>0.

一类二阶线性微分方程的Ulam–Hyers稳定性
在这项工作中,我们证明了以下方程(E)Γ′′(x)+(γ−1)Γ’(x)-γΓ(x)=0的Ulam–Hyers稳定性,其中γ是实数。主要目的是找到(E)满足|Γ(x)−f(x)|⩽K的解,其中K是Ulam–Hyers稳定性常数,f是相关不等式|f′′′(x)+(γ−1)f′(x;0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信