Example of a solution for Dorodnitzyn’s limit formula

C.V. Valencia-Negrete
{"title":"Example of a solution for Dorodnitzyn’s limit formula","authors":"C.V. Valencia-Negrete","doi":"10.1016/j.exco.2023.100114","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we show an example of a solution for Dorodnitzyn’s gaseous boundary layer limit formula. Oleinik’s <em>no back-flow</em> condition ensures the existence and uniqueness of solutions for the Prandtl equations in a rectangular domain <span><math><mrow><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. It also allowed us to find a limit formula for Dorodnitzyn’s stationary compressible boundary layer with constant total energy on a bounded convex domain in the plane <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Under the same assumption, we can give an approximate solution <span><math><mi>u</mi></math></span> for the limit formula if <span><math><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mo>&lt;</mo><mspace></mspace><mspace></mspace><mo>&lt;</mo><mspace></mspace><mspace></mspace><mo>&lt;</mo><mn>1</mn></mrow></math></span> such that: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>≅</mo><mi>δ</mi><mo>∗</mo><mi>c</mi><mo>∗</mo><mfenced><mrow><mi>z</mi><mo>+</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>25</mn></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>4</mn><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></mfenced><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>that corresponds to an approximate horizontal velocity component when a small parameter <span><math><mi>ϵ</mi></math></span> given by the quotient of the maximum height of the domain divided by its length tends to zero. Here, <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mi>δ</mi></math></span> is the boundary layer’s height in Dorodnitzyn’s coordinates, <span><math><mi>U</mi></math></span> is the <em>free-stream</em> velocity at the upper boundary of the domain, and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the absolute surface temperature.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100114"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we show an example of a solution for Dorodnitzyn’s gaseous boundary layer limit formula. Oleinik’s no back-flow condition ensures the existence and uniqueness of solutions for the Prandtl equations in a rectangular domain RR2. It also allowed us to find a limit formula for Dorodnitzyn’s stationary compressible boundary layer with constant total energy on a bounded convex domain in the plane R2. Under the same assumption, we can give an approximate solution u for the limit formula if |u|<<<1 such that: u(z)δcz+62512i04U23z4+o(z5),that corresponds to an approximate horizontal velocity component when a small parameter ϵ given by the quotient of the maximum height of the domain divided by its length tends to zero. Here, c>0, δ is the boundary layer’s height in Dorodnitzyn’s coordinates, U is the free-stream velocity at the upper boundary of the domain, and T0 is the absolute surface temperature.

Dorodnitzyn极限公式解的例子
本文给出了Dorodnitzyn气体边界层极限公式的一个解的例子。Oleinik的无回流条件保证了矩形域R⊂R2中Prandtl方程解的存在性和唯一性。它还使我们能够在平面R2的有界凸域上找到具有恒定总能量的Dorodnitzyn静止可压缩边界层的极限公式。在相同的假设下,如果|u|<<<;1使得:u(z)Şδ*c*z+625∙12i0∙4U23z4+o(z5),当由域的最大高度除以其长度的商给出的小参数ε趋于零时,这对应于近似的水平速度分量。这里,c>;0,δ是Dorodnitzyn坐标中的边界层高度,U是域上边界的自由流速度,T0是绝对表面温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信