A review on offloading in fog-based Internet of Things: Architecture, machine learning approaches, and open issues

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kalimullah Lone , Shabir Ahmad Sofi
{"title":"A review on offloading in fog-based Internet of Things: Architecture, machine learning approaches, and open issues","authors":"Kalimullah Lone ,&nbsp;Shabir Ahmad Sofi","doi":"10.1016/j.hcc.2023.100124","DOIUrl":null,"url":null,"abstract":"<div><p>There is an exponential increase in the number of smart devices, generating helpful information and posing a serious challenge while processing this huge data. The processing is either done at fog level or cloud level depending on the size and nature of the task. Offloading data to fog or cloud adds latency, which is less in fog and more in the cloud. The methods of processing data and tasks at fog level or cloud are mostly machine learning based. In this paper, we will discuss all three levels in terms of architecture, starting from the internet of things to fog and fog to cloud. Specifically, we will describe machine learning-based offloading from the internet of things to fog and fog to cloud. Finally, we will come up with current research directions, issues, and challenges in the IoT–fog–cloud environment.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 2","pages":"Article 100124"},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

There is an exponential increase in the number of smart devices, generating helpful information and posing a serious challenge while processing this huge data. The processing is either done at fog level or cloud level depending on the size and nature of the task. Offloading data to fog or cloud adds latency, which is less in fog and more in the cloud. The methods of processing data and tasks at fog level or cloud are mostly machine learning based. In this paper, we will discuss all three levels in terms of architecture, starting from the internet of things to fog and fog to cloud. Specifically, we will describe machine learning-based offloading from the internet of things to fog and fog to cloud. Finally, we will come up with current research directions, issues, and challenges in the IoT–fog–cloud environment.

基于雾的物联网卸载综述:架构、机器学习方法和开放问题
智能设备的数量呈指数级增长,在处理这些巨大数据的同时,产生了有用的信息,并带来了严峻的挑战。根据任务的大小和性质,处理可以在雾级别或云级别进行。将数据卸载到雾或云中会增加延迟,雾中的延迟较少,云中的延迟较多。在雾级或云中处理数据和任务的方法大多是基于机器学习的。在本文中,我们将从架构的角度讨论这三个层面,从物联网到雾,从雾到云。具体来说,我们将描述基于机器学习的从物联网到雾和从雾到云的卸载。最后,我们将提出物联网-雾-云环境中的当前研究方向、问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信