Implicit Copulas: An Overview

IF 2 Q2 ECONOMICS
Michael Stanley Smith
{"title":"Implicit Copulas: An Overview","authors":"Michael Stanley Smith","doi":"10.1016/j.ecosta.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Implicit copulas<span> are the most common copula choice for modeling dependence in high dimensions. This broad class of copulas is introduced and surveyed, including elliptical copulas, skew </span></span><span><math><mi>t</mi></math></span><span> copulas, factor copulas, time series copulas and regression copulas. The common auxiliary representation of implicit copulas is outlined, and how this makes them both scalable and tractable for statistical modeling<span>. Issues such as parameter identification, extended likelihoods for discrete or mixed data, parsimony in high dimensions, and simulation from the copula model are considered. Bayesian<span> approaches to estimate the copula parameters, and predict from an implicit copula model, are outlined. Particular attention is given to implicit copula processes constructed from time series and regression models, which is at the forefront of current research. Two econometric<span> applications—one from macroeconomic time series and the other from financial asset pricing—illustrate the advantages of implicit copula models.</span></span></span></span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"28 ","pages":"Pages 81-104"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 9

Abstract

Implicit copulas are the most common copula choice for modeling dependence in high dimensions. This broad class of copulas is introduced and surveyed, including elliptical copulas, skew t copulas, factor copulas, time series copulas and regression copulas. The common auxiliary representation of implicit copulas is outlined, and how this makes them both scalable and tractable for statistical modeling. Issues such as parameter identification, extended likelihoods for discrete or mixed data, parsimony in high dimensions, and simulation from the copula model are considered. Bayesian approaches to estimate the copula parameters, and predict from an implicit copula model, are outlined. Particular attention is given to implicit copula processes constructed from time series and regression models, which is at the forefront of current research. Two econometric applications—one from macroeconomic time series and the other from financial asset pricing—illustrate the advantages of implicit copula models.

隐式Copulas:综述
隐式copula是高维依赖建模中最常见的copula选择。介绍并综述了这一大类系词,包括椭圆系词、斜t系词、因子系词、时间序列系词和回归系词。概述了隐式copula的常见辅助表示,以及这如何使它们在统计建模中既可扩展又易于处理。考虑了参数识别、离散或混合数据的扩展似然性、高维简约性以及copula模型的模拟等问题。概述了估计copula参数的贝叶斯方法,以及从隐式copula模型进行预测的贝叶斯方法。特别关注由时间序列和回归模型构建的隐式copula过程,这是当前研究的前沿。两个计量经济学应用——一个来自宏观经济时间序列,另一个来自金融资产定价——说明了隐含copula模型的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信