Bayesian estimation of realized GARCH-type models with application to financial tail risk management

IF 2 Q2 ECONOMICS
Cathy W.S. Chen , Toshiaki Watanabe , Edward M.H. Lin
{"title":"Bayesian estimation of realized GARCH-type models with application to financial tail risk management","authors":"Cathy W.S. Chen ,&nbsp;Toshiaki Watanabe ,&nbsp;Edward M.H. Lin","doi":"10.1016/j.ecosta.2021.03.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>Advances in the various realized GARCH models have proven effective in taking account of the bias in realized volatility (RV) introduced by microstructure noise and non-trading hours. They have been extended into nonlinear or long-memory patterns, including the realized exponential GARCH (EGARCH), realized heterogeneous autoregressive GARCH (HAR-GARCH), and realized threshold GARCH (TGARCH) models. These models with skew Student’s t-distribution are applied to </span>quantile<span> forecasts such as Value-at-Risk and expected shortfall of financial returns as well as volatility forecasting. Parameter estimation and quantile forecasting are built on Bayesian<span><span> Markov chain Monte Carlo sampling methods. Backtesting measures are presented for both Value-at-Risk and expected shortfall forecasts and employ two loss functions to assess volatility forecasts. Results taken from the S&amp;P500 in the U.S. market with approximately 5-year out-of-sample periods covering the COVID-19 pandemic period are reported as follows: (1) The realized HAR-GARCH model performs best in respect of violation rates and expected shortfall at the 1% and 5% </span>significance levels. (2) The realized EGARCH model performs best with regard to volatility forecasts.</span></span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"28 ","pages":"Pages 30-46"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecosta.2021.03.006","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 8

Abstract

Advances in the various realized GARCH models have proven effective in taking account of the bias in realized volatility (RV) introduced by microstructure noise and non-trading hours. They have been extended into nonlinear or long-memory patterns, including the realized exponential GARCH (EGARCH), realized heterogeneous autoregressive GARCH (HAR-GARCH), and realized threshold GARCH (TGARCH) models. These models with skew Student’s t-distribution are applied to quantile forecasts such as Value-at-Risk and expected shortfall of financial returns as well as volatility forecasting. Parameter estimation and quantile forecasting are built on Bayesian Markov chain Monte Carlo sampling methods. Backtesting measures are presented for both Value-at-Risk and expected shortfall forecasts and employ two loss functions to assess volatility forecasts. Results taken from the S&P500 in the U.S. market with approximately 5-year out-of-sample periods covering the COVID-19 pandemic period are reported as follows: (1) The realized HAR-GARCH model performs best in respect of violation rates and expected shortfall at the 1% and 5% significance levels. (2) The realized EGARCH model performs best with regard to volatility forecasts.

已实现GARCH型模型的贝叶斯估计及其在金融尾部风险管理中的应用
各种已实现GARCH模型的进展已被证明在考虑微观结构噪声和非交易时间引入的已实现波动率(RV)偏差方面是有效的。它们已经扩展到非线性或长记忆模式,包括已实现的指数GARCH(EGARCH)、已实现的异质自回归GARCH(HAR-GARCH)和已实现的阈值GARCH(TGARCH)模型。这些具有偏斜Student t分布的模型被应用于分位数预测,如风险价值和财务回报的预期缺口以及波动性预测。参数估计和分位数预测建立在贝叶斯马尔可夫链蒙特卡罗抽样方法的基础上。针对风险价值和预期缺口预测提出了回溯测试措施,并使用两个损失函数来评估波动性预测。从S&;美国市场的P500样本期约为5年,涵盖新冠肺炎大流行期,报告如下:(1)在1%和5%的显著性水平上,实现的HAR-GARCH模型在违规率和预期短缺方面表现最佳。(2) 所实现的EGARCH模型在波动性预测方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信