Numerical weighted integration of functions having mixed smoothness

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dinh Dũng
{"title":"Numerical weighted integration of functions having mixed smoothness","authors":"Dinh Dũng","doi":"10.1016/j.jco.2023.101757","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the approximation of weighted integrals over <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span> for integrands<span><span> from weighted Sobolev spaces of mixed smoothness. We prove </span>upper and lower bounds of the convergence rate of optimal quadratures with respect to </span></span><em>n</em> integration nodes for functions from these spaces. In the one-dimensional case <span><math><mo>(</mo><mi>d</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span>, we obtain the right convergence rate of optimal quadratures. For <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the approximation of weighted integrals over Rd for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to n integration nodes for functions from these spaces. In the one-dimensional case (d=1), we obtain the right convergence rate of optimal quadratures. For d2, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain Rd.

混合光滑函数的数值加权积分
我们研究了混合光滑加权Sobolev空间中被积函数在Rd上的加权积分的逼近。对于来自这些空间的函数,我们证明了关于n个积分节点的最优象限的收敛速度的上界和下界。在一维情形(d=1)中,我们获得了最优象限的正确收敛速度。对于d≥2,上界由函数域Rd中阶跃双曲交叉上具有积分节点的稀疏网格象限执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信