Discrepancy bounds for normal numbers generated by necklaces in arbitrary base

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Roswitha Hofer, Gerhard Larcher
{"title":"Discrepancy bounds for normal numbers generated by necklaces in arbitrary base","authors":"Roswitha Hofer,&nbsp;Gerhard Larcher","doi":"10.1016/j.jco.2023.101767","DOIUrl":null,"url":null,"abstract":"<div><p>Mordechay B. Levin (1999) has constructed a number <em>λ</em> which is normal in base 2, and such that the sequence <span><math><msub><mrow><mo>(</mo><mrow><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>λ</mi><mo>}</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></mrow></msub></math></span> has very small discrepancy <span><math><mi>N</mi><mo>⋅</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>=</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span>. This construction technique was generalized by Becher and Carton (2019), who generated normal numbers via nested perfect necklaces, for which the same upper discrepancy estimate holds. In this paper we derive an upper discrepancy bound for so-called semi-perfect nested necklaces and show that for Levin's normal number in arbitrary prime base <em>p</em> this upper bound for the discrepancy is best possible. This result generalizes a previous result by the authors (2022) in base 2.</p><p>Our result for Levin's normal number in any prime base might support the guess that <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> is the best order in <em>N</em> that can be achieved by a normal number, while generalizing the class of known normal numbers by introducing semi-perfect necklaces on the other hand might help for the search of normal numbers that satisfy smaller discrepancy bounds.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000365","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mordechay B. Levin (1999) has constructed a number λ which is normal in base 2, and such that the sequence ({2nλ})n=0,1,2, has very small discrepancy NDN=O((logN)2). This construction technique was generalized by Becher and Carton (2019), who generated normal numbers via nested perfect necklaces, for which the same upper discrepancy estimate holds. In this paper we derive an upper discrepancy bound for so-called semi-perfect nested necklaces and show that for Levin's normal number in arbitrary prime base p this upper bound for the discrepancy is best possible. This result generalizes a previous result by the authors (2022) in base 2.

Our result for Levin's normal number in any prime base might support the guess that O((logN)2) is the best order in N that can be achieved by a normal number, while generalizing the class of known normal numbers by introducing semi-perfect necklaces on the other hand might help for the search of normal numbers that satisfy smaller discrepancy bounds.

任意基数项链生成的正态数的差界
Mordecay B.Levin(1999)构造了一个在2基数上正常的数λ,使得序列({2nλ})n=0,1,2,…具有非常小的差异n·DN=O(log⁡N) 2)。Becher和Carton(2019)推广了这一构造技术,他们通过嵌套的完美项链生成了正态数,对它们的差异估计上限相同。在本文中,我们导出了所谓的半完全嵌套项链的一个上界,并证明了对于任意素数p上的Levin正规数,这个上界是最可能的。这一结果推广了作者(2022)在基2中的先前结果。我们对任何素数基中的Levin正规数的结果可能支持O((log⁡N) 2)是N中正规数可以达到的最佳阶,而另一方面,通过引入半完全项链来推广已知正规数类可能有助于搜索满足较小差异界的正规数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信