{"title":"Discrepancy bounds for normal numbers generated by necklaces in arbitrary base","authors":"Roswitha Hofer, Gerhard Larcher","doi":"10.1016/j.jco.2023.101767","DOIUrl":null,"url":null,"abstract":"<div><p>Mordechay B. Levin (1999) has constructed a number <em>λ</em> which is normal in base 2, and such that the sequence <span><math><msub><mrow><mo>(</mo><mrow><mo>{</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>λ</mi><mo>}</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></mrow></msub></math></span> has very small discrepancy <span><math><mi>N</mi><mo>⋅</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>=</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span>. This construction technique was generalized by Becher and Carton (2019), who generated normal numbers via nested perfect necklaces, for which the same upper discrepancy estimate holds. In this paper we derive an upper discrepancy bound for so-called semi-perfect nested necklaces and show that for Levin's normal number in arbitrary prime base <em>p</em> this upper bound for the discrepancy is best possible. This result generalizes a previous result by the authors (2022) in base 2.</p><p>Our result for Levin's normal number in any prime base might support the guess that <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> is the best order in <em>N</em> that can be achieved by a normal number, while generalizing the class of known normal numbers by introducing semi-perfect necklaces on the other hand might help for the search of normal numbers that satisfy smaller discrepancy bounds.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"78 ","pages":"Article 101767"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000365","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mordechay B. Levin (1999) has constructed a number λ which is normal in base 2, and such that the sequence has very small discrepancy . This construction technique was generalized by Becher and Carton (2019), who generated normal numbers via nested perfect necklaces, for which the same upper discrepancy estimate holds. In this paper we derive an upper discrepancy bound for so-called semi-perfect nested necklaces and show that for Levin's normal number in arbitrary prime base p this upper bound for the discrepancy is best possible. This result generalizes a previous result by the authors (2022) in base 2.
Our result for Levin's normal number in any prime base might support the guess that is the best order in N that can be achieved by a normal number, while generalizing the class of known normal numbers by introducing semi-perfect necklaces on the other hand might help for the search of normal numbers that satisfy smaller discrepancy bounds.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.